Skip to main content
  • Published:

Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: Experimental and phenological evidence

Abstract

Experimentally determined ranges of thermal tolerance and requirements for completion of the life history of some 60 seaweed species from the North Atlantic Ocean were compared with annual temperature regimes at their geographic boundaries. In all but a few species, thermal responses accounted for the location of boundaries. Distribution was restricted by: (a) lethal effects of high or low temperatures preventing survival of the hardiest life history stage (often microthalli), (b) temperature requirements for completion of the life history operating on any one process (i.e. [sexual] reproduction, formation of macrothalli or blades), (c) temperature requirements for the increase of population size (through growth or the formation of asexual propagules). Optimum growth/reproduction temperatures or lethal limits of the non-hardiest stage (often macrothalli) were irrelevant in explaining distribution. In some species, ecotypic differentiation in thermal responses over the distribution range influenced the location of geographic boundaries, but in many other species no such ecotypic differences were evident. Specific daylength requirements affected the location of boundaries only when interacting with temperature. The following types of thermal responses could be recognised, resulting in characteristic distribution patterns: (A) Species endemic to the (warm) temperate eastern Atlantic had narrow survival ranges (between ca 5 and ca 25°C) preventing occurrence in NE America. In species with isomorphic life histories without very specific temperature requirements for reproduction, northern and southern boundaries in Eur/Africa are set by lethal limits. Species with heteromorphic life histories often required high and/or low temperatures to induce reproduction in one or both life history phases which further restricted distribution. (B) Species endemic to the tropical western Atlantic also had narrow survival ranges (between ca 10 and ca 35°C). Northern boundaries are set by low, lethal winter temperatures. Thermal properties would potentially allow occurrence in the (sub) tropical eastern Atlantic, but the ocean must have formed a barrier to dispersal. No experimental evidence is so far available for tropical species with an amphi-Atlantic distribution. (C) Tropical to temperate species endemic to the western Atlantic had broad survival ranges (<0 to ca 35°C). Northern boundaries are set by low summer temperatures preventing (growth and) reproduction. Thermal properties would permit occurrence in the (sub)tropical eastern Atlantic, but along potential “stepping stones” for dispersal in the northern Atlantic (Greenland, Iceland, NW Europe) summer temperatures would be too low for growth. (D) In most amphi-Atlantic (tropical-) temperate species, northern boundaries are set by low summer temperatures preventing reproduction or the increase of population size. On European shores, species generally extended into regions with slightly lower summer temperatures than in America, probably because milder winters allow survival of a larger part of the population. (E) Amphi-Atlantic (Arctic-) temperate species survived at subzero temperatures. In species with isomorphic life histories not specifically requiring low temperatures for reproduction, southern boundaries are set by lethally high summer temperatures on both sides of the Atlantic. None of the species survived temperatures over 30°C which prevents tropical occurrence. Species with these thermal responses are characterized by distribution patterns in which southern boundaries in Eur/Africa lie further south than those in eastern N America because of cooler summers. In most species with heteromorphic life histories (or crustose and erect growth forms), low temperatures were required for formation of the macrothalli (either directly or through the induction of sexual reproduction). These species have composite southern boundaries in the north Atlantic Ocean. On American coasts, boundaries are set by lethally high summer temperatures, on European coasts by winter temperatures too high for the induction of macrothalli. Species with this type of thermal responses are characterized by distribution patterns in which the boundaries in Eur/Africa lie further north than those in eastern N America because of warmer winters.

Literature Cited

  • Ajisaka, T. & Umezaki, I., 1978. The life history ofSphaerotrichia divaricata (Ag.) Kylin in culture. —Jap. J. Phycol.26, 53–59.

    Google Scholar 

  • Amsler, C. D., 1985. Field and laboratory studies ofGiffordia mitchelliae (Phaeophyceae) in North Carolina. — Botanica mar.28, 295–301.

    Google Scholar 

  • Ardré, F., 1970. Contribution à l'étude des algues marines du Portugal. I. La flore. — Port. Acta biol. (B)10, 1–420.

    Google Scholar 

  • Ardré, F., 1971. Contribution à l'étude des algues marines du Portugal. II. Ecologie et chorologie. —Bull. Cent. Etud. Rech. scient., Biarritz8, 359–574.

    Google Scholar 

  • Bird, C. J., Greenwell, M. & McLachlan, J., 1983. Benthic marine algal flora of the north shore of Prince Edward Island (Gulf of St. Lawrence), Canada. — Aquat. Bot.16, 315–335.

    Article  Google Scholar 

  • Bird, C. J. & McLachlan, J., 1986. The effect of salinity on distribution of species ofGracilaria Grev. (Rhodophyta, Gigartinales): an experimental assessment. — Botanica mar.29, 231–238.

    Google Scholar 

  • Bolton, J. J., 1983. Ecoclinal variation inEctocarpus siliculosus (Phaeophyceae) with respect to temperature growth optima and survial limits. — Mar. Biol.73, 131–138.

    Article  Google Scholar 

  • Bolton, J. J., Germann, I. & Lüning, K., 1983. Hybridization between Atlantic and Pacific representatives of the Simplices section ofLaminaria (Phaeophyta). — Phycologia22, 133–140.

    Google Scholar 

  • Bolton, J. J. & Lüning, K., 1982. Optimal growth and maximal survival temperatures of AtlanticLaminaria species (Phaeophyta) in culture. — Mar. Biol.66, 89–94.

    Article  Google Scholar 

  • Breeman, A. M., Bos, S., Essen, S. van & Mulekom, L. L. van, 1984. Light-dark regimes intertidal zone and tetrasporangial periodicity in the red algaRhodochorton purpureum. —Helgoländer Meeresunters.38, 365–387.

    Article  Google Scholar 

  • Breeman, A. M. & Hoeksema, B. W., 1987. Vegetative propagation of the red algaRhodochorton purpureum by means of fragments that escape digestion by herbivores. — Mar. Ecol. Prog. Ser.35, 197–201.

    Google Scholar 

  • Breeman, A. M. & Hoopen, A. ten, 1981. Ecology and distribution of the subtidal red algaAcrosymphyton purpuriferum (J. Ag.) Sjöst. (Rhodophyceae, Cryptonemiales). — Aquat. Bot.11, 143–166.

    Article  Google Scholar 

  • Breeman, A. M., Meulenhoff, E. J. S. & Guiry, M. D., 1988. Life history regulation and phenology of the red algaBonnemaisonia hamifera. — Helgoländer Meeresunters.42 (in press).

  • Cambridge, M. L., Breeman, A. M., Oosterwijk, R. van & Hoek, C. van den, 1984. Temperature responses of some North AtlanticCladophora species (Chlorophyceae) in relation to their geographic distribution. — Helgoländer Meeresunters.38, 349–363.

    Article  Google Scholar 

  • Cambridge, M. L., Breeman, A. M., Kraak, S. & Hoek, C. van den, 1987. Temperature responses of tropical to warm temperateCladophora species in relation to their distribution in the North Atlantic Ocean. — Helgoländer Meeresunters.41, 329–354.

    Google Scholar 

  • Carlton, J. T. & Scanlon, J. A., 1985. Progression and dispersal of an introduced alga:Codium fragile ssp.tomentosoides (Chlorophyta) on the Atlantic coast of North America. — Botanica mar.28, 155–165.

    Google Scholar 

  • Correa, J., Novaczek, I. & McLachlan, J., 1986. Effect of temperature and daylength on morphogenesis ofScytosiphon lomentaria (Scytosiphonales, Phaeophyta) from eastern Canada. —Phycologia25, 469–475.

    Google Scholar 

  • Critchley, A. T., Farnham, W. F. & Morrell, S. L., 1983. A chronology of new European sites of attachment for the invasive brown alga,Sargassum muticum, 1973–1981. — J. mar. biol. Ass. U.K.63, 799–811.

    Google Scholar 

  • Dieck, I. tom, 1987. Temperature tolerance and daylength effects in isolates ofScytosiphon lomentaria (Phaeophyceae) of the North Atlantic and North Pacific Ocean. — Helgoländer Meeresunters.41, 307–321.

    Article  Google Scholar 

  • Dixon, P. S., 1965. Perennation, vegetative propagation and algal life histories, with special reference toAsparagopsis and other Rhodophyta. — Botanica gothoburg.3, 67–74.

    Google Scholar 

  • Dixon, P. S. & Irvine, L. M., 1977. Seaweeds of the British Isles. Vol. I. Rhodophyta. Part I. Introduction, Nemaliales, Gigartinales. British Museum, London,1(1), 1–252.

    Google Scholar 

  • Dring, M. J., 1984. Photoperiodism and phycology. In: Progress in Phycological Research. Ed. by F. Round & D. J. Chapman. Biopress Ltd., Bristol,3, 159–192.

    Google Scholar 

  • Dring, M. J. & Lüning, K., 1983. Photomorphogenesis of marine macroalgae. In: Encyclopedia of plant physiology. Ed. by W. Shropshire & H. Mohr. Springer, Heidelberg,16B, 545–568.

    Google Scholar 

  • Dring, M. J. & West, J. A., 1983. Photoperiodic control of tetrasporangium formation in the red algaRhodochorton purpureum. — Planta159, 143–150.

    Article  Google Scholar 

  • Earle, S. A., 1969. Phaeophyta of the eastern Gulf of Mexico. — Phycologia7, 71–254.

    Google Scholar 

  • Forward, S. G. & South, G. R., 1985. Observations on the taxonomy and life history of North AtlanticAcrothrix Kylin (Phaeophyceae, Chordariales). — Phycologia24, 347–359.

    Google Scholar 

  • Fries, L., 1966. Temperature optima of some red algae in axenic culture. — Botanica mar.9, 12–14.

    Google Scholar 

  • Furnari, G., 1984. The benthic marine algae of southern Italy. Floristic and geobotanic considerations. — Webbia38, 349–369.

    Google Scholar 

  • Gaines, S. D. & Lubchenko, J., 1982. A unified approach to marine plant-herbivore interactions. II. Biogeography. — A. Rev. Ecol. Syst.13, 111–138.

    Google Scholar 

  • Gorshkov, S. G. (Ed.), 1978. World Ocean Atlas. 2: Atlantic and Indian Oceans. Pergamon Press, Oxford.

    Google Scholar 

  • Gorshkov, S. G. (Ed.), 1980. World Ocean Atlas. 3: Arctic and Antarctic Oceans. Pergamon Press, Oxford.

    Google Scholar 

  • Guiry, M. D., 1984. Photoperiodic and temperature responses in the growth and tetrasporogenesis ofGigartina acicularis (Rhodophyta) from Ireland. — Helgoländer Meeresunters.38, 335–347.

    Article  Google Scholar 

  • Guiry, M. D. & Cunningham, E. M., 1984. Photoperiodic and temperature responses in the reproduction of north eastern AtlanticGigartina acicularis (Rhodophyta: Gigartinales). — Phycologia23, 357–367.

    Google Scholar 

  • Guiry, M. D., Tripodi, G. & Lüning, K., 1987. Biosystematics, genetics and upper temperature tolerance inGigartina teedii (Rhodophyta) from the Atlantic and Mediterranean. — Helgoländer Meeresunters.41, 283–295.

    Article  Google Scholar 

  • Hamel, G., 1931–1939. Phéophycées de France. Wolf, Rouan, 431 pp.

    Google Scholar 

  • Haugen, I. N., 1970. The male gametophyte ofBonnemaisonia hamifera Hariot in Norway. — Br. phycol. J.5, 239–241.

    Google Scholar 

  • Hay, M. E., 1981. Herbivory, algal distribution, and maintenance of between-habitat diversity on a tropical fringing reef. — Am. nat.118, 520–540.

    Article  Google Scholar 

  • Henry, E. C., 1987a. The life history ofPhyllariopsis brevipes (= Phyllaria reniformis) (Phyllariaceae, Phaeophyceae), a kelp with dioecious but sexually monomorphic gametophytes. — Phycologia26, 17–22.

    Google Scholar 

  • Henry, E. C., 1987b. Primitive reproductive characters and a photoperiodic response inSaccorhiza dermatodea (Laminariales, Phaeophyceae). — Br. phycol. J.22, 23–31.

    Google Scholar 

  • Hoek, C. van den, 1963. Revision of the European species ofCladophora. Brill, Leiden, 248 pp.

    Google Scholar 

  • Hoek, C. van den, 1982a. Phytogeographic distribution groups of benthic marine algae in the North Atlantic Ocean. A review of experimental evidence from life history studies. — Helgoländer Meeresunters.35, 153–214.

    Article  Google Scholar 

  • Hoek, C. van den, 1982b. The distribution of benthic marine algae in relation to the temperature regulation of their life histories. — Biol. J. Linn. Soc.18, 81–144.

    Google Scholar 

  • Hoek, C. van den, 1982c. A taxonomic revision of the American species ofCladophora (Chlorophyceae) in the North Atlantic Ocean and their geographic distribution. — Verh. K. ned. Acad. Wet. (Afd. Natuurk., 2. R.)78, 1–236.

    Google Scholar 

  • Hoek, C. van den, 1984. World-wide latitudinal and longitudinal seaweed distribution patterns and their possible causes, as illustrated by the distribution of Rhodophytan genera. — Helgoländer Meeresunters.38, 227–257.

    Google Scholar 

  • Hoek, C. van den & Donze, M., 1966. The algal vegetation of the rocky côte Basque (S. W. France). —Bull. Cent. Etud. Rech. scient., Biarritz,6, 289–319.

    Google Scholar 

  • Hommersand, M. H., 1986. The biogeography of the South African marine red algae: a model. —Botanica mar.29, 257–270.

    Google Scholar 

  • Hoopen, A. ten, Bos, S. & Breeman, A. M., 1983. Photoperiodic response in the formation of gametangia of the long-day plantSphacelaria rigidula (Phaeophyceae). — Mar. Ecol. Prog. Ser.13, 285–289.

    Google Scholar 

  • Hooper, R. G., South, G. R. & Whittick, A., 1980. Ecological and phenological aspects of the marine phytobenthos of the island of Newfoundland. In: The shore environment. Ed. by J. H. Price, D. E. G. Irvine & W. F. Farnham. Acad. Press, London,2, 915–945.

    Google Scholar 

  • Humm, H. J., 1979. The marine algae of Virginia. Univ. Press Virginia, Charlottesville, 263 pp.

    Google Scholar 

  • Irvine, D. E. G., Guiry, M. D., Tittley, I., Russell, G., 1975. New and interesting marine algae from the Shetland Isles. — Br. phycol. J.10, 57–71.

    Google Scholar 

  • Joosten, A. M. T. & Hoek, C. van den, 1986. World-wide relationships between red seaweed floras: a multivariate approach. — Botanica mar.24, 195–214.

    Google Scholar 

  • Kain (Jones), J. M., 1987. Photoperiod and temperature as triggers in the seasonality ofDelesseria sanguinea. — Helgoländer Meeresunters.41, 355–370.

    Article  Google Scholar 

  • Keats, D. W. & South, G. R., 1985. Aspects of the reproductive phenology ofSaccorhiza dermatodea (Phaeophyta, Laminariales) in Newfoundland. — Br. phycol. J.20, 117–122.

    Google Scholar 

  • Klein, B. 1987. The phenology ofDumontia contorta (Rhodophyta) studied by following individual plants in situ at Roscoff, northern Brittany. — Botanica mar.30, 187–194.

    Google Scholar 

  • Kornmann, P. & Sahling, P.-H., 1977. Meeresalgen von Helgoland. — Helgoländer wiss. Meeresunters.29, 1–289.

    Article  Google Scholar 

  • Kristiansen, A., 1984. Experimental field studies on the ecology ofScytosiphon lomentaria (Fucophyceae, Scytosiphonales) in Denmark. — Nord. J. Bot.4, 719–724.

    Google Scholar 

  • Kuhlenkamp, R. & Müller, D. G., 1985. Culture studies on the life history ofHaplospora globosa andTilopteris mertensii (Tilopteridales, Phaeophyceae). — Br. phycol. J.20, 301–312.

    Google Scholar 

  • Lawson, G. M. & John, D. M., 1977. The marine flora of the Cap Blanc peninsula: its distribution and affinities. — Bot. J. Linn. Soc.75, 99–118.

    Google Scholar 

  • Lawson, G. M. & John, D. M., 1982. The marine algae and coastal environment of tropical West Africa. Cramer, Vaduz, 455 pp.

    Google Scholar 

  • Lee, J.-A. & Brinkhuis, B. H., 1986. Reproductive phenology ofLaminaria saccharina (L.) Lamour. (Phaeophyta) at the southern limit of its distribution in the northwestern Atlantic Ocean. —J. Phycol.22, 276–285.

    Google Scholar 

  • Lüning, K., 1975. Kreuzungsexperimente anLaminaria saccharina von Helgoland und von der Isle of Man. — Helgoländer wiss. Meeresunters.27, 108–114.

    Article  Google Scholar 

  • Lüning, K., 1980a. Control of algal life-history by daylength and temperature. In: The shore environment. Ed. by J. H. Price, D. E. G. Irvine & W. F. Farnham. Acad. Press, London,2, 915–945.

    Google Scholar 

  • Lüning, K., 1980b. Critical levels of light and temperature regulating gametogenesis of threeLaminaria species (Phaeophyceae). — J. Phycol.16, 1–15.

    Google Scholar 

  • Lüning, K., 1981. Photomorphogenesis of reproduction in marine macroalgae. — Ber. dt. bot. Ges.94, 401–417.

    Google Scholar 

  • Lüning, K., 1984. Temperature tolerance and biogeography of seaweeds: The marine algal flora of Helgoland (North Sea) as an example. — Helgoländer Meeresunters.38, 305–317.

    Article  Google Scholar 

  • Lüning, K., 1985. Meeresbotanik. Thieme, Stuttgart, 375 pp.

    Google Scholar 

  • Lüning, K., 1986. New frond formation inLaminaria hyperborea (Phaeophyta): a photoperiodic response. — Br. phycol. J.21, 269–273.

    Google Scholar 

  • Lüning, K., Chapman, A. R. O. & Mann, K. H., 1978. Crossing experiments of the non-digitate complex ofLaminaria from both sides of the Atlantic. — Phycologia17, 293–298.

    Google Scholar 

  • Lüning, K., Guiry, M. D. & Masuda, M., 1987. Upper temperature tolerance of North Atlantic and North Pacific geographical isolates ofChondrus species (Rhodophyta). — Helgoländer Meeresunters.41, 297–306.

    Google Scholar 

  • Maggs, C. A., 1986. Scottish marine macro-algae: a distributional checklist, biogeographical analysis and literature abstract. — Rep. Nat. Cons. Couns., Petersborough,635, 1–137.

    Google Scholar 

  • Maggs, C. A. & Guiry, M. D., 1987. Environmental control of macroalgal phenology. In: Plant life in aquatic and amphibious habitats. Ed. by R. M. M. Crawford. Blackwell, Oxford, 359–373.

    Google Scholar 

  • Maier, I., 1984. Culture studies ofChorda tomentosa (Phaeophyta, Laminariales). — Br. phycol. J.19, 95–106.

    Google Scholar 

  • Mathieson, A. C. & Dawes, C. J., 1975. Seasonal studies of Florida sublittoral marine algae. — Bull. mar. Sci.25, 46–65.

    Google Scholar 

  • Mathieson, A. C. & Dawes, C. J., 1986. Photosynthetic responses of Florida seaweeds to light and temperature: a physiological survey. — Bull. mar. Sci.38, 512–524.

    Google Scholar 

  • McLachlan, J. & Bird, C. J., 1984. Geographical and experimental assessment of the distribution ofGracilaria species (Rhodophyta: Gigartinales) in relation to temperature. — Helgoländer Meeresunters.38, 319–334.

    Article  Google Scholar 

  • Meunier, A., 1965. Etude de la végétation algale de Cap Saint-Martin (Biarritz). Thése, Univ., Bordeaux, 178 pp.

  • Müller, D. G., 1979. Genetic affinity ofEctocarpus siliculosus (Dillw.) Lyngb. from the Mediterranean, North Atlantic and Australia. — Phycologia,18, 312–318.

    Google Scholar 

  • Müller, D. G. & Luthe, N. M., 1981. Hormonal interaction in sexual reproduction ofDesmarestia aculeata (Phaeophyceae). — Br. phycol. J.16, 351–356.

    Google Scholar 

  • Norton, T. A., 1972. The development ofSaccorhiza dermatodea in culture. — Phycologia11, 81–86.

    Google Scholar 

  • Norton, T. A., 1977. Experiments of the factors influencing the geographical distribution ofSaccorhiza polyschides andSaccorhiza dermatodea. — New Phytologist78, 625–635.

    Google Scholar 

  • Norton, T. A., 1986. Provisional atlas of British seaweeds. British Phycological Society and the Biological Research Centre, Port Erin, 164 pp.

    Google Scholar 

  • Novaczek, I., 1987. Periodicity of epiphytes onZostera marina in two embayments of the southern Gulf of St. Lawrence. — Can. J. Bot.65, 1676–1681.

    Google Scholar 

  • Novaczek, I., Bird, C. J. & McLachlan, J., 1986a. The effect of temperature on development and reproduction inChorda filum andC. tomentosa (Phaeophyceae, Laminariales) from Nova Scotia. — Can. J. Bot.64, 2414–2420.

    Google Scholar 

  • Novaczek, I., Bird, C. J. & McLachlan, J., 1986b. Culture and field studies ofStilophora rhizodes (Phaeophyceae, Chordariales) from Nova Scotia, Canada. — Br. phycol. J.21, 407–416.

    Google Scholar 

  • Novaczek, I., Bird, C. J. & McLachlan, J., 1987. Phenology and temperature tolerance of the red algaeChondria baileyana, Lomentaria baileyana, Griffithsia globulifera andDasya baillouviana in Nova Scotia. — Can. J. Bot.65, 57–62.

    Google Scholar 

  • Novaczek, I. & McLachlan, J., 1987 Correlation of temperature and daylength response ofSphaerotrichia divaricata (Phaeophyta, Chordariales) with field phenology in Nova Scotia and distribution in North America. — Br. phycol. J.22, 215–219.

    Google Scholar 

  • Orris, P. K. & Taylor, J. E., 1973. A floristic and ecological survey. The macro-algae of Rehoboth Bay, Delaware. — Botanica mar.16, 180–192.

    Google Scholar 

  • Peckol, P., 1982. Seasonal occurrence and reproduction of some marine algae of the continental shelf, North Carolina. — Botanica mar.25, 185–190.

    Google Scholar 

  • Peckol, P. & Searles, R. B., 1984. Temporal and spatial patterns of growth and survival of invertebrate and algal populations of a North Carolina continental shelf community. — Estuar. coast. Shelf Sci.18, 133–143.

    Google Scholar 

  • Peters, A. F. & Müller, D. G., 1986. Sexual reproduction ofStilophora rhizodes (Phaeophyceae, Chordariales) in culture. — Br. phycol. J.21, 417–423.

    Google Scholar 

  • Pielou, E. C., 1977. The latitudinal spans of seaweed species and their patterns of overlap. —J. Biogeogr.4, 299–311.

    Google Scholar 

  • Printz, H., 1926. Die Algenvegetation des Trondhjemsfjordes. — Skr. norske VidenskAkad. (Mat.-naturv. Kl.)5, 1–274.

    Google Scholar 

  • Rietema, H., 1982. Effects of photoperiod and temperature on macrothallus initiation inDumontia contorta (Rhodophyta). — Mar. Ecol. Prog. Ser.8, 187–196.

    Google Scholar 

  • Rietema, H. & Breeman, A. M., 1982. The regulation of the life history ofDumontia contorta in comparison to that of several other Dumontiaceae (Rhodophyta). — Botanica mar.25, 569–576.

    Google Scholar 

  • Rietema, H. & Hoek, C. van den, 1981. The life history ofDesmotrichum undulatum (Phaeophyceae) and its regulation by temperature and light conditions. — Mar. Ecol. Prog. Ser.4, 321–335.

    Google Scholar 

  • Rietema, H. & Hoek, C. van den, 1984. Search for possible latitudinal ecotypes inDumontia contorta (Rhodophyta). — Helgoländer Meeresunters.38, 389–399.

    Article  Google Scholar 

  • Rueness, J., 1977. Norsk Algeflora. Universitetsforlaget, Oslo, 266 pp.

    Google Scholar 

  • Rueness, J. & Asen, P. A., 1982. Field and culture observations on the life history ofBonnemaisonia asparagoides (Woodw.) C. Ag. (Rhodophyta) from Norway. — Botanica mar.25, 577–587.

    Google Scholar 

  • Searles, R. B., 1984. Seaweed biogeography of the mid-Atlantic coast of the United States. —Helgoländer Meeresunters.38, 259–271.

    Article  Google Scholar 

  • Searles, R. B. & Schneider, C. W., 1978. A checklist and bibliography of North Carolina seaweeds. —Botanica mar.21, 99–108.

    Google Scholar 

  • Sears, J. R. & Wilce, R. T., 1975. Sublittoral, benthic marine algae of southern Cape Cod and adjacent islands: seasonal periodicity, associations, diversity, and floristic composition. — Ecol. Monogr.45, 337–365.

    Google Scholar 

  • South, G. R. & Burrows, E. M., 1967. Studies on marine algae of the British Isles. 5.Chorda filum (L.) Stackh. — Br. phycol. Bull.3, 379–402.

    Google Scholar 

  • South, G. R. & Tittley, I., 1986. A checklist and distributional index of the benthic marine algae of the North Atlantic Ocean. British Museum (Natural History), London, 76 pp.

    Google Scholar 

  • Stephenson, T. A. & Stephenson, A., 1972. Life between tide marks on rocky shores. Freeman, San Francisco, 425 pp.

    Google Scholar 

  • Stewart, J. G., 1984. Algal distributions and temperature: test of a hypothesis based on vegetative growth rates. — Bull. Sth. Calif. Acad. Sci.83, 57–68.

    Google Scholar 

  • Strömgren, T., 1977. Short-term effects of temperature upon growth of intertidal Fucales. — J. exp. mar. Biol. Ecol.29, 181–195.

    Google Scholar 

  • Strömgren, T., 1983. Temperature-length growth strategies in the littoral algaAscophyllum nodosum (L.). — Limnol. Oceanogr.28, 515–521.

    Google Scholar 

  • Sundene, O., 1963. Reproduction and ecology ofChorda tomentosa. — Nytt. Mag. Bot.10, 159–167.

    Google Scholar 

  • Taylor, W. R., 1960. Marine algae of the eastern tropical and subtropical coasts of the Americas. Univ. Press, Michigan, 870 pp.

    Google Scholar 

  • U.S. Navy, 1974. Marine climatic atlas of the world. Vol. 1. North Atlantic Ocean. U.S. Government Printing Office, Washington.

    Google Scholar 

  • U.S. Navy, 1981. Marine climatic atlas of the world. Vol. 9. World-wide means and standard deviations. U.S. Government Printing Office, Washington.

    Google Scholar 

  • Weigel, H.-P., 1978. Temperature and salinity observations from Helgoland Reede in 1976. — Annls biol., Copenh.33, 35.

    Google Scholar 

  • West, J. A., 1972. Environmental regulation of reproduction inRhodochorton purpureum. In: Contributions to the systematics of benthic marine algae of the North Pacific. Ed. by I. A. Abbott, J. A. West & M. H. Hommersand. Jap. Soc. Phycol., Kobe, 213–230.

    Google Scholar 

  • Whittick, A., 1977. The reproductive ecology ofPlumaria elegans (Bonnem.) Schmitz (Ceramiaceae: Rhodophyta) at its northern limit in the western Atlantic. — J. exp. mar. Biol. Ecol.29, 223–230.

    Article  Google Scholar 

  • Whittick, A., 1978. The life history and phenology ofCallithamnion corymbosum (Rhodophyta: Ceramiaceae) in Newfoundland. — Can. J. Bot.56, 2497–2499.

    Google Scholar 

  • Whittick, A., 1981. Culture and field studies onCallithamnion hookeri (Dillw.) S. F. Gray (Rhodophyta: Ceramiaceae) from newfoundland. — Br. phycol. J.16, 289–295.

    Google Scholar 

  • Wilce, R. T., 1959. The marine algae of the Labrador peninsula and northwest Newfoundland (ecology and distribution). — Bull. natn. Mus. Can.158, 103 pp.

  • Wynne, M. J., 1986. A checklist of benthic marine algae of the tropical and subtropical western Atlantic. — Can. J. Bot.64, 2239–2281.

    Google Scholar 

  • Wynne, M. J. & Ballantine, D. L., 1986. The genusHypoglossum (Kützing) (Delesseriaceae, Rhodophyta) in the tropical western Atlantic, includingH. anomalum sp. nov. — J. Phycol.22, 185–193.

    Google Scholar 

  • Yarish, C., Breeman, A. M. & Hoek, C. van den, 1984. Temperature, light and photoperiod responses in some Northeast American and West European endemic rhodophytes in relation to their geographic distribution. — Helgoländer Meeresunters.38, 273–304.

    Article  Google Scholar 

  • Yarish, C., Breeman, A. M. & Hoek, C. van den, 1986. Survival strategies and temperature responses of seaweeds belonging to different distribution groups. — Botanica mar.29, 215–230.

    Google Scholar 

  • Yarish, C., Kirkman, H. & Lüning, K., 1987. Lethal exposure times and preconditioning to upper temperature limits of some temperate North Atlantic red algae. — Helgoländer Meeresunters.41, 323–327.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breeman, A.M. Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: Experimental and phenological evidence. Helgolander Meeresunters 42, 199–241 (1988). https://doi.org/10.1007/BF02366043

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02366043

Keywords