On the morphology of the central nervous system in larval stages ofCarcinus maenas L. (Decapoda, Brachyura)
Helgoländer Meeresuntersuchungen volume 47, pages 61–79 (1993)
Abstract
We investigated the morphology of the central nervous system throughout the larval development ofCarcinus maenas. For that purpose single larvae were reared in the laboratory from hatching through metamorphosis. Complete series of whole mout semithin sections were obtained from individuals of all successive larval stages and analysed with a light microscope. Morphological feature and spatial arrangement of discernable neural cell clusters, fibre tracts and neuropile are described and compared with the adult pattern. We found that most of the morphological features characterizing the adult nervous system are already present in the zoea-1. Nevertheless, there are marked differences with respect to the arrangement of nerve cell bodies, organization of cerebral neuropile, and disposition of ganglia in the ventral nerve cord. It appears that complexity of the central nervous neuropile is selectively altered during postmetamorphotic development, probably reflecting adaptive changes of sensory-motor integration in response to behavioural maturation. In contrast, during larval development there was little change in the overall structural organization of the central nervous system despite some considerable growth. However, the transition from zoea-4 to megalopa brings about multiple fundamental changes in larval morphology and behavioural pattern. Since central nervous integration should properly adapt to the altered behavioural repertoire of the megalopa, it seems necessary to ask in which respect synaptic rearrangement might characterize development of the central nervous system.
Literature Cited
Abbott, N. J., 1971. The organization of the cerebral ganglion in the shore crab,Carcinus maenas. —I. Morphology. — Z. Zellforsch. mikrosk. Anat.120, 386–400.
Agardh, C. D., Kalimo, H., Olsson, Y. & Siesjö, B. K., 1981. Reply to the remarks by J. B. Brierley and A. W. Brown. — Acta neuropathol.55, 323–325.
Auer, R. N., Kalimo, H., Olsson, Y. & Siesjö, B. K., 1985. The temporal evolution of hypoglycemic brain damage. I: Light- and electron microscopic findings in the rat cerebral cortex. — Acta neuropathol.67, 13–24.
Bethe, A., 1897. Das Nervensystem vonCarcinus maenas. Ein anatomisch-physiologischer Versuch. I. Theil, I. — Mittheilung. — Arch. mikrosk. Anat. EntwMech.50, 460–546.
Bevengut, M., Simmers, A. J. & Clarac, F., 1983. Central neuronal projections and neuromuscular organization of the basal region of the shore crab leg. — J. comp. Neurol.221, 185–198.
Blaustein, D. N., Derby, C. D., Simmons, R. B. & Beall, A. C., 1988. Structure of the brain and medulla terminalis of the spiny lobsterPanulirus argus and the crayfishProcambarus clarkii, with an emphasis on olfactory centers. — J. crust. Biol.8, 493–519.
Breidbach, O., 1990. Constant topological organization of the coleopteran metamorphosing nervous system: analysis of persistent elements in the nervous system ofTenebrio molitor. — J. Neurobiol.21, 990–1001.
Brierley, J. B. & Brown, A. W., 1981. Remarks on the papers by C. D. Agardh et al./H. Kalimo et al. “Hyperglycemic brain injury I, II”. — Acta neuropathol.55, 319–322.
Bullock, T. H. & Horridge, G. A., 1965. Structure and function in the nervous systems of invertebrates. Freeman, San Francisco, 1719 pp.
Cammermeyer, J., 1961. An evaluation of the significance of “dark” neuron. — Ergebn. Anat. EntwGesch.36, 1–61.
Cammermeyer, J., 1978. Is the solitary dark neuron a manifestation of post mortem trauma to the brain inadequately fixed by perfusion? — Histochemistry56, 97–115.
Chrachri, A. & Clarac, F., 1989. Synaptic connections between motor neurons and interneurons in the fourth thoracic ganglion of the crayfish,Procambarus clarkii. — J. Neurophysiol.62, 1237–1250.
Cournil, I., Meyrand, P. & Moulins, M., 1990. Identification of all GABA-immunoreactive neurons projecting to the lobster stomatogastric ganglion. — J. Neurocytol.19, 478–439.
Dawirs, R. R., 1982. Methodical aspects of rearing decapod larvae,Pagurus bernhardus (Paguridae) andCarcinus maenas (Portunidae). — Helgoländer Meeresunters.35, 439–464.
Dawirs, R. R., 1985. Temperature and larval development ofCarcinus maenas (Decapoda) in the laboratory; predictions of larval dynamics in the sea. — Mar. Ecol. Prog. Ser.24, 297–302.
Dawirs, R. R., Teuchert-Noodt, G. & Kacza, J., 1992. Naturally occurring degrading events in axon terminals of the dentate gyrus and stratum lucidum in the spiny mouse (Acomys cahirhinus) during maturation, adulthood and aging. — Devl. Neurosci.14, 210–220.
Derby, C. B. & Blaustein, D. N., 1988. Morphological and physiological characterization of individual olfactory interneurons connecting the brain and eyestalk ganglia of the crayfish. — J. comp. Physiol. (A)163, 777–794.
Fedesova, T. V., 1978. Neuropile architectonics of the crayfish last abdominal ganglion. — Zool. Jb. (Anat. Ontogenie Tiere)99, 559–584.
Gallyas, F., Güldner, F. H., Zoltay, G. & Wolff, J. R., 1990. Golgi-like demonstration of “dark” neurons with an argyrophil III method for experimental neuropathology. — Acta neuropathol.79, 620–628.
Hanström, B., 1947. The brain, sense organs, and the incretory organs of the head in the Crustacea Malacostraca. — K. fysiogr. Sällsk. Lund Handl.58, 1–45.
Harris, W. A., 1990. Neurometamorphosis. — J. Neurobiol.21, 953–957.
Harzsch, S. & Dawirs, R. R., 1992. Neurometamorphosis in larval stages ofCarcinus maenas (Decapoda, Brachyura). In: Rhythmogenesis in neurons and networks. Ed. by N. Elsner & D. W. Richter, Thieme, Stuttgart, 622.
Helm, F., 1928. Vergleichend-anatomische Untersuchungen über das Gehirn, insbesondere das “Antennalganglion” der Dekapoden. — Z. Morph. Oekol. Tiere12, 70–134.
Holländer, H. & Vaaland, J. L., 1968. A reliable staining method for semi-thin sections in experimental neuroanatomy. — Brain Res.10, 120–126.
Johansson, K. U. I., 1991. Identification of different types of serotonin-like immunoreactive olfactory interneurons in four infraorders of decapod crustaceans. — Cell Tissue Res.264, 357–362.
Krasne, F. B. & Stirling, C. A., 1972. Synapses of crayfish abdominal ganglia with special attention to afferent and efferent connections of the lateral giant fibers. — Z. Zellforsch. mikrosk. Anat.127, 526–544.
Laverack, M. S., 1988a. The numbers of neurons in decapod crustacea. — J. crust. Biol.8, 1–11.
Laverack, M. S., 1988b. Larval locomotion, sensors, growth and their implication for the nervous system. — Symp. zool. Soc. Lond.59, 103–122.
Leise, E. M., Hall, W. & Mulloney, B., 1986. Functional organization of crayfish abdominal ganglia: I. The flexor systems. — J. comp. Neurol.253, 25–45.
Leise, E. M., Hall, W. M. & Mulloney, B., 1987. Functional organization of crayfish abdominal ganglia: II. Sensory afferents and extensor motor neurons. — J. comp. Neurol.266, 495–518.
Letourneau, J. G., 1976. Addition of sensory structures and associated neurons to the crayfish telson during development. — J. comp. Physiol. (A)110, 13–23.
Levine, R. B. & Weeks, J. C., 1990. Hormonally mediated changes in simple reflex circuits during metamorphosis inManduca. — J. Neurobiol.21, 1022–1036.
Lnenicka, G. A. & Murphey, R. K., 1989. The refinement of invertebrate synapses during development. — J. Neurobiol.20, 339–355.
Nässel, D. R. & Elofsson, R., 1987. Comparative anatomy of the crustacean brain. In: Arthropod brain. Ed. by A. P. Gupta. Wiley, New York, 111–133.
Retzius, G., 1890. Zur Kenntnis des Nervensystems der Crustaceen. — Biol. Unters.1, 1–50.
Sandeman, D. C. & Luff, S. E., 1973. The structural organization of glomerular neuropile in the olfactory and accessory lobes of an Australian freshwater crayfish,Cherax destructor. — Z. Zellforsch. mikrosk. Anat.142, 37–61.
Sandeman, D. C., Sandeman, R. E. & Aitken, A. R., 1988. Atlas of serotonin-containing neurons in the optic lobes and brain of the crayfish,Cherax destructor. — J. comp. Neurol.269, 465–478.
Sandeman, R. E., Sandeman, D. C. & Watson, A. H. D., 1990. Substance P antibody reveals homologous neurons with axon terminals among somata in the crayfish and crab brain. — J. comp. Neurol.294, 569–582.
Selverston, A. J. & Moulins, M., 1987. The crustacean stomatogastric system. Springer, Berlin, 345 pp.
Silvey, G. E., 1981. The distal limb motor neurons in the thoracic ganglion of the spiny lobster. — J. comp. Neurol.200, 579–595.
Teuchert-Noodt, G., Breuker, K. H. & Dawirs, R. R., 1991. Neuronal lysosome accumulation in degrading synapses of sensory-motor and limbic subsystems in the duckAnas platyrhynchos: Indication of rearrangements during avian brain development? — Devl. Neurosci.13, 151–163.
Truman, J. W., 1990. Metamorphosis of the central nervous system ofDrosophila. — J. Neurobiol.21, 1072–1084.
Tsvileneva, V. A., 1978. Nervous structure of the crayfish abdominal ganglia. — Zool. Jb. (Anat. Ontogenie Tiere)99, 527–558.
Tsvileneva, V. A. & Titova, V. A., 1985. On the brain structures of decapods. — Zool. Jb. (Anat. Ontogenie Tiere)113, 217–266.
Turrigiano, G. G. & Selverston, A. I., 1991. Distribution of Cholecystokinin-like immunoreactivity within the stomatogastric nervous system of four species of decapod crustacea. — J. comp. Neurol.305, 164–176.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Harzsch, S., Dawirs, R.R. On the morphology of the central nervous system in larval stages ofCarcinus maenas L. (Decapoda, Brachyura). Helgolander Meeresunters 47, 61–79 (1993). https://doi.org/10.1007/BF02366185
Issue Date:
DOI: https://doi.org/10.1007/BF02366185
Keywords
- Central Nervous System
- Larval Stage
- Larval Development
- Nerve Cord
- Fibre Tract