Skip to main content
  • Published:

On the morphology of the central nervous system in larval stages ofCarcinus maenas L. (Decapoda, Brachyura)

Abstract

We investigated the morphology of the central nervous system throughout the larval development ofCarcinus maenas. For that purpose single larvae were reared in the laboratory from hatching through metamorphosis. Complete series of whole mout semithin sections were obtained from individuals of all successive larval stages and analysed with a light microscope. Morphological feature and spatial arrangement of discernable neural cell clusters, fibre tracts and neuropile are described and compared with the adult pattern. We found that most of the morphological features characterizing the adult nervous system are already present in the zoea-1. Nevertheless, there are marked differences with respect to the arrangement of nerve cell bodies, organization of cerebral neuropile, and disposition of ganglia in the ventral nerve cord. It appears that complexity of the central nervous neuropile is selectively altered during postmetamorphotic development, probably reflecting adaptive changes of sensory-motor integration in response to behavioural maturation. In contrast, during larval development there was little change in the overall structural organization of the central nervous system despite some considerable growth. However, the transition from zoea-4 to megalopa brings about multiple fundamental changes in larval morphology and behavioural pattern. Since central nervous integration should properly adapt to the altered behavioural repertoire of the megalopa, it seems necessary to ask in which respect synaptic rearrangement might characterize development of the central nervous system.

Literature Cited

  • Abbott, N. J., 1971. The organization of the cerebral ganglion in the shore crab,Carcinus maenas. —I. Morphology. — Z. Zellforsch. mikrosk. Anat.120, 386–400.

    Google Scholar 

  • Agardh, C. D., Kalimo, H., Olsson, Y. & Siesjö, B. K., 1981. Reply to the remarks by J. B. Brierley and A. W. Brown. — Acta neuropathol.55, 323–325.

    Article  CAS  PubMed  Google Scholar 

  • Auer, R. N., Kalimo, H., Olsson, Y. & Siesjö, B. K., 1985. The temporal evolution of hypoglycemic brain damage. I: Light- and electron microscopic findings in the rat cerebral cortex. — Acta neuropathol.67, 13–24.

    CAS  PubMed  Google Scholar 

  • Bethe, A., 1897. Das Nervensystem vonCarcinus maenas. Ein anatomisch-physiologischer Versuch. I. Theil, I. — Mittheilung. — Arch. mikrosk. Anat. EntwMech.50, 460–546.

    Google Scholar 

  • Bevengut, M., Simmers, A. J. & Clarac, F., 1983. Central neuronal projections and neuromuscular organization of the basal region of the shore crab leg. — J. comp. Neurol.221, 185–198.

    CAS  PubMed  Google Scholar 

  • Blaustein, D. N., Derby, C. D., Simmons, R. B. & Beall, A. C., 1988. Structure of the brain and medulla terminalis of the spiny lobsterPanulirus argus and the crayfishProcambarus clarkii, with an emphasis on olfactory centers. — J. crust. Biol.8, 493–519.

    Google Scholar 

  • Breidbach, O., 1990. Constant topological organization of the coleopteran metamorphosing nervous system: analysis of persistent elements in the nervous system ofTenebrio molitor. — J. Neurobiol.21, 990–1001.

    Article  CAS  PubMed  Google Scholar 

  • Brierley, J. B. & Brown, A. W., 1981. Remarks on the papers by C. D. Agardh et al./H. Kalimo et al. “Hyperglycemic brain injury I, II”. — Acta neuropathol.55, 319–322.

    Article  CAS  PubMed  Google Scholar 

  • Bullock, T. H. & Horridge, G. A., 1965. Structure and function in the nervous systems of invertebrates. Freeman, San Francisco, 1719 pp.

    Google Scholar 

  • Cammermeyer, J., 1961. An evaluation of the significance of “dark” neuron. — Ergebn. Anat. EntwGesch.36, 1–61.

    Google Scholar 

  • Cammermeyer, J., 1978. Is the solitary dark neuron a manifestation of post mortem trauma to the brain inadequately fixed by perfusion? — Histochemistry56, 97–115.

    Article  CAS  PubMed  Google Scholar 

  • Chrachri, A. & Clarac, F., 1989. Synaptic connections between motor neurons and interneurons in the fourth thoracic ganglion of the crayfish,Procambarus clarkii. — J. Neurophysiol.62, 1237–1250.

    CAS  PubMed  Google Scholar 

  • Cournil, I., Meyrand, P. & Moulins, M., 1990. Identification of all GABA-immunoreactive neurons projecting to the lobster stomatogastric ganglion. — J. Neurocytol.19, 478–439.

    Article  CAS  PubMed  Google Scholar 

  • Dawirs, R. R., 1982. Methodical aspects of rearing decapod larvae,Pagurus bernhardus (Paguridae) andCarcinus maenas (Portunidae). — Helgoländer Meeresunters.35, 439–464.

    Article  Google Scholar 

  • Dawirs, R. R., 1985. Temperature and larval development ofCarcinus maenas (Decapoda) in the laboratory; predictions of larval dynamics in the sea. — Mar. Ecol. Prog. Ser.24, 297–302.

    Google Scholar 

  • Dawirs, R. R., Teuchert-Noodt, G. & Kacza, J., 1992. Naturally occurring degrading events in axon terminals of the dentate gyrus and stratum lucidum in the spiny mouse (Acomys cahirhinus) during maturation, adulthood and aging. — Devl. Neurosci.14, 210–220.

    CAS  Google Scholar 

  • Derby, C. B. & Blaustein, D. N., 1988. Morphological and physiological characterization of individual olfactory interneurons connecting the brain and eyestalk ganglia of the crayfish. — J. comp. Physiol. (A)163, 777–794.

    CAS  Google Scholar 

  • Fedesova, T. V., 1978. Neuropile architectonics of the crayfish last abdominal ganglion. — Zool. Jb. (Anat. Ontogenie Tiere)99, 559–584.

    Google Scholar 

  • Gallyas, F., Güldner, F. H., Zoltay, G. & Wolff, J. R., 1990. Golgi-like demonstration of “dark” neurons with an argyrophil III method for experimental neuropathology. — Acta neuropathol.79, 620–628.

    Article  CAS  PubMed  Google Scholar 

  • Hanström, B., 1947. The brain, sense organs, and the incretory organs of the head in the Crustacea Malacostraca. — K. fysiogr. Sällsk. Lund Handl.58, 1–45.

    Google Scholar 

  • Harris, W. A., 1990. Neurometamorphosis. — J. Neurobiol.21, 953–957.

    Article  CAS  PubMed  Google Scholar 

  • Harzsch, S. & Dawirs, R. R., 1992. Neurometamorphosis in larval stages ofCarcinus maenas (Decapoda, Brachyura). In: Rhythmogenesis in neurons and networks. Ed. by N. Elsner & D. W. Richter, Thieme, Stuttgart, 622.

    Google Scholar 

  • Helm, F., 1928. Vergleichend-anatomische Untersuchungen über das Gehirn, insbesondere das “Antennalganglion” der Dekapoden. — Z. Morph. Oekol. Tiere12, 70–134.

    Google Scholar 

  • Holländer, H. & Vaaland, J. L., 1968. A reliable staining method for semi-thin sections in experimental neuroanatomy. — Brain Res.10, 120–126.

    PubMed  Google Scholar 

  • Johansson, K. U. I., 1991. Identification of different types of serotonin-like immunoreactive olfactory interneurons in four infraorders of decapod crustaceans. — Cell Tissue Res.264, 357–362.

    Article  Google Scholar 

  • Krasne, F. B. & Stirling, C. A., 1972. Synapses of crayfish abdominal ganglia with special attention to afferent and efferent connections of the lateral giant fibers. — Z. Zellforsch. mikrosk. Anat.127, 526–544.

    Article  CAS  PubMed  Google Scholar 

  • Laverack, M. S., 1988a. The numbers of neurons in decapod crustacea. — J. crust. Biol.8, 1–11.

    Google Scholar 

  • Laverack, M. S., 1988b. Larval locomotion, sensors, growth and their implication for the nervous system. — Symp. zool. Soc. Lond.59, 103–122.

    Google Scholar 

  • Leise, E. M., Hall, W. & Mulloney, B., 1986. Functional organization of crayfish abdominal ganglia: I. The flexor systems. — J. comp. Neurol.253, 25–45.

    Article  CAS  PubMed  Google Scholar 

  • Leise, E. M., Hall, W. M. & Mulloney, B., 1987. Functional organization of crayfish abdominal ganglia: II. Sensory afferents and extensor motor neurons. — J. comp. Neurol.266, 495–518.

    Article  CAS  PubMed  Google Scholar 

  • Letourneau, J. G., 1976. Addition of sensory structures and associated neurons to the crayfish telson during development. — J. comp. Physiol. (A)110, 13–23.

    Google Scholar 

  • Levine, R. B. & Weeks, J. C., 1990. Hormonally mediated changes in simple reflex circuits during metamorphosis inManduca. — J. Neurobiol.21, 1022–1036.

    Article  CAS  PubMed  Google Scholar 

  • Lnenicka, G. A. & Murphey, R. K., 1989. The refinement of invertebrate synapses during development. — J. Neurobiol.20, 339–355.

    Article  CAS  PubMed  Google Scholar 

  • Nässel, D. R. & Elofsson, R., 1987. Comparative anatomy of the crustacean brain. In: Arthropod brain. Ed. by A. P. Gupta. Wiley, New York, 111–133.

    Google Scholar 

  • Retzius, G., 1890. Zur Kenntnis des Nervensystems der Crustaceen. — Biol. Unters.1, 1–50.

    Google Scholar 

  • Sandeman, D. C. & Luff, S. E., 1973. The structural organization of glomerular neuropile in the olfactory and accessory lobes of an Australian freshwater crayfish,Cherax destructor. — Z. Zellforsch. mikrosk. Anat.142, 37–61.

    Article  CAS  PubMed  Google Scholar 

  • Sandeman, D. C., Sandeman, R. E. & Aitken, A. R., 1988. Atlas of serotonin-containing neurons in the optic lobes and brain of the crayfish,Cherax destructor. — J. comp. Neurol.269, 465–478.

    Article  CAS  PubMed  Google Scholar 

  • Sandeman, R. E., Sandeman, D. C. & Watson, A. H. D., 1990. Substance P antibody reveals homologous neurons with axon terminals among somata in the crayfish and crab brain. — J. comp. Neurol.294, 569–582.

    Article  CAS  PubMed  Google Scholar 

  • Selverston, A. J. & Moulins, M., 1987. The crustacean stomatogastric system. Springer, Berlin, 345 pp.

    Google Scholar 

  • Silvey, G. E., 1981. The distal limb motor neurons in the thoracic ganglion of the spiny lobster. — J. comp. Neurol.200, 579–595.

    Article  CAS  PubMed  Google Scholar 

  • Teuchert-Noodt, G., Breuker, K. H. & Dawirs, R. R., 1991. Neuronal lysosome accumulation in degrading synapses of sensory-motor and limbic subsystems in the duckAnas platyrhynchos: Indication of rearrangements during avian brain development? — Devl. Neurosci.13, 151–163.

    CAS  Google Scholar 

  • Truman, J. W., 1990. Metamorphosis of the central nervous system ofDrosophila. — J. Neurobiol.21, 1072–1084.

    Article  CAS  PubMed  Google Scholar 

  • Tsvileneva, V. A., 1978. Nervous structure of the crayfish abdominal ganglia. — Zool. Jb. (Anat. Ontogenie Tiere)99, 527–558.

    Google Scholar 

  • Tsvileneva, V. A. & Titova, V. A., 1985. On the brain structures of decapods. — Zool. Jb. (Anat. Ontogenie Tiere)113, 217–266.

    Google Scholar 

  • Turrigiano, G. G. & Selverston, A. I., 1991. Distribution of Cholecystokinin-like immunoreactivity within the stomatogastric nervous system of four species of decapod crustacea. — J. comp. Neurol.305, 164–176.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harzsch, S., Dawirs, R.R. On the morphology of the central nervous system in larval stages ofCarcinus maenas L. (Decapoda, Brachyura). Helgolander Meeresunters 47, 61–79 (1993). https://doi.org/10.1007/BF02366185

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02366185

Keywords