Skip to main content
  • Third Seaweed Biogeography Workshop
  • Published:

A critique of traditional approaches to seaweed distribution in light of the development of vicariance biogeography

Abstract

An overview of the primary approaches to seaweed biogeography is provided in light of the development of vicariance biogeography. Each approach is discussed with particular regard to the extent to which the methods and objectives are compatible with vicariance. Ecological biogeography is considered an offshoot of ecology and physiology and is more appropriate in determining current distributions of organisms and aspects of physiological ecology rather than the speciation history of monophyletic groups. The R/P quotient of Feldmann and distribution of algal life-forms do not fall within the aegis of vicariance and are considered useful only in a descriptive sense. The examination of seaweed spans propounded by Pielou is considered flawed because of the lack of dependence on monophyletic groups. The floristic school of analysis of many seaweed biogeographers is analagous to the panbiogeography of Croizat, and provides the basis for the more concrete phylogenetic hypotheses that are the basis for vicariance analysis. The latter is considered the best methodology for studying the relationship between patterns of cladogenesis and the distribution of constituent taxa.

Literature Cited

  • Ball, I. R., 1976. Nature and formulation of biogeographical hypotheses. — Syst. Zool.24, 407–430.

    Google Scholar 

  • Bird, C. J. & McLachlan, J., 1986. The effect of salinity on distribution of species ofGracilaria Grev. (Rhodophyta, Gigartinales): an experimental assessment. — Botanica mar.29, 231–238.

    Google Scholar 

  • Bolton, J. J., 1986. Marine phytogeography of the Benguela upwelling region on the west coast of southern Africa: a temperature dependent approach. — Botanica mar.29, 251–256.

    Google Scholar 

  • Brundin, L. Z., 1981. Croizat’s panbiogeography versus phylogenetic biogeography. In: Vicariance biogeography. Ed. by G. Nelson & D. E. Rosen. Columbia Univ. Press, New York, 94–158.

    Google Scholar 

  • Chapman, V. J. & Chapman, D. J., 1976. Life forms in the algae — Botanica mar.19, 65–74.

    Google Scholar 

  • Cheney, D. F., 1977. R & C/P — a new and improved ratio for comparing seaweed floras. — J. Phycol.13 (Suppl.) 12.

    Google Scholar 

  • Craw, R. C., 1983. Panbiogeography and vicariance caldistics: are they truly different?. — Syst. Zool.32, 431–438.

    Google Scholar 

  • Craw, R. C. & Weston, P., 1984. Panbiogeography: a progressive research program?. — Syst. Zool33, 1–13.

    Google Scholar 

  • Croizat, L., 1964. Space, time, form: the biological synthesis. Croizat, Caracas, 881 pp.

  • Croizat, L. 1984. Mayr vs. Croizat: Croizat vs. Mayr — an enquiry. — Tuatara27, 49–66.

    Google Scholar 

  • Farris, J. S., 1981. Distance data in phylogenetic analysis. In: Advances in cladistics. Ed. by V. A. Funk & D. R. Brooks. New York Botanical Garden, Bronx, 3–23.

    Google Scholar 

  • Feldmann, J., 1937. Recherches sur la végétation marine de la Méditerranée. La côtes des Albères. —Revue algol.10, 1–339.

    Google Scholar 

  • Garbary, D., 1976. Life-forms of algae and their distribution. — Botanica mar.19, 97–106.

    Google Scholar 

  • Hoek, C. van den, 1975. Phytogeographic provinces along the coasts of the northern Atlantic Ocean. — Phycologia14, 317–330.

    Google Scholar 

  • Hoek, C. van den, 1984. World-wide latitudinal and longitudinal seaweed distribution patterns and their possible causes, as illustrated by the distribution of Rhodophytan genera. — Helgoländer Meeresunters.38, 227–257.

    Google Scholar 

  • Hoek, C. van den, 1987. The possible significance of long-range dispersal for the biogeography of seaweeds. — Helgoländer Meeresunters.41, 261–272.

    Google Scholar 

  • Hommersand, M. H., 1972. Taxonomic and phytogeographic relationships of warm temperate marine algae occurring in Pacific North America and Japan. — Proc. int. Seaweed Symp.7, 66–71.

    Google Scholar 

  • Hommersand, M. H., 1986. The biogeography of the South African marine red algae: a model. —Botanica mar.29, 257–270.

    Google Scholar 

  • Innes, D. J., 1984. Genetic differentiation among populations of marine algae. — Helgoländer Meeresunters.38, 401–417.

    Article  Google Scholar 

  • Joosten, A. M. T. & Hoek, C. van den, 1986. World-wide relationships between red seaweed floras: a multivariate approach. — Botanica mar.29, 195–214.

    Google Scholar 

  • Lamouroux, M., 1826. Mémoire sur la géographie des plantes marines. — Annls Sci. nat. (Sér.1)7, 60–82.

    Google Scholar 

  • Lawson, G. W., 1978. The distribution of marine algal floras in the tropical and subtropical Atlantic Ocean: a quantitative approach. — Bot. J. Linn. Soc.76, 177–193.

    Google Scholar 

  • Lindstrom, S. C., 1987. Possible sister groups and phylogenetic relationships among selected North Pacific and North Atlantic red algae. — Helgoländer Meeresunters.41, 245–260.

    Google Scholar 

  • Lüning, K., 1984. Temperature tolerance and biogeography of seaweeds: the marine algal flora of Helgoland (North Sea) as an example. — Helgoländer Meeresunters.38, 305–317.

    Article  Google Scholar 

  • Lüning, K., 1985. Meeresbotanik. Thieme, Stuttgart, 375 pp.

    Google Scholar 

  • McLachlan, J. & Bird, C. J., 1984. Geographical and experimental assessment of the distribution ofGracilaria species (Rhodophyta: Gigartinales) in relation to temperature. — Helgoländer Meeresunters.38, 319–334.

    Article  Google Scholar 

  • Nelson, G. & Platnick, N. I., 1981. Systematics and biogeography: cladistics and vicariance. Columbia Univ. Press, New York, 567 pp.

    Google Scholar 

  • Nicholson, N. L., 1979. Evolution withinMacrocystis: northern and southern hemisphere taxa. — Inf. Ser. N. Z., Dep. scient. ind. Res.,137, 433–441.

    Google Scholar 

  • Olsen-Stojkovich, J., West, J. A. & Lowenstein, J. M., 1986. Phylogenetics and biogeography in the Cladophorales, complex (Chlorophyta): some insights from immunological distance data. —Botanica mar.29, 239–249.

    Google Scholar 

  • Papenfuss, G. F., 1972. On the geographic distribution of some tropical marine algae. — Proc. int. Seaweed Symp.7, 45–51.

    Google Scholar 

  • Parsons, M. J., 1985. New Zealand seaweed flora and its relationships. — N. Z. Jl mar. Freshwat. Res.19, 131–138.

    Google Scholar 

  • Pielou, E. C., 1977. The latitudinal spans of seaweed species and their patterns of overlap. — J. Biogeogr.4, 299–311.

    Google Scholar 

  • Pielou, E. C., 1978. Latitudinal overlap of seaweed species: evidence for quasi-sympatric speciation. — J. Biogeogr.5, 227–238.

    Google Scholar 

  • Proctor, V. W., 1980. Historical biogeography ofChara (Charophyta): an appraisal of the Braun-Wood classification plus a falsifiable alternative for future consideration. — J. Phycol.16, 218–233.

    Article  Google Scholar 

  • Prud’Homme van Reine, W. F., 1982. A taxonomic revision of the European Sphacelariaceae (Sphacelariaceae, Phaeophyceae). Brill, Leiden, 293 pp.

    Google Scholar 

  • Rietema, H. & Hoek, C. van den, 1984. Search for possible latitudinal ecotypes inDumontia contorta (Rhodophyta). — Helgoländer Meeresunters.38, 389–399.

    Article  Google Scholar 

  • Schneider, C. W., 1976. Spatial and temporal distributions of the benthic marine algae on the continental shelf of the Carolinas. — Bull. mar. Sci.26, 133–151.

    Google Scholar 

  • Seberg, O., 1986. A critique of the theory and methods of panbiogeography. — Syst. Zool.35, 369–380.

    Google Scholar 

  • Setzer, R. B., 1974. Preliminary investigations of benthic marine algae from the breakwaters protecting Los Angeles and Long Beach Harbors. — Mar. Stud. San Pedro Bay., Calif.4, 89–101.

    Google Scholar 

  • Silva, P. C., 1979. The benthic algal flora of central San Francisco Bay. In: San Francisco Bay, the urbanized estuary. Ed. by T. J. Conomos. Pac. Div., Am. Acad. Adv. Sci., San Francisco, 287–345.

    Google Scholar 

  • Thom, R. M., Armstrong, J. W., Staude, C. P., Chew, K. K. & Norris, R. E., 1976. A survey of the attached marine flora at five beaches in the Seattle, Washington, area. — Syesis 9, 267–275.

    Google Scholar 

  • Widdowson, T. B., 1971. Changes in the intertidal algal flora of the Los Angeles area since the survey by E. Yale Dawson in 1956–1959. — Bull. Sth. Calif. Acad. Sci.70, 2–16.

    Google Scholar 

  • Wiley, E. O., 1981. Phylogenetics. Wiley, New York, 439 pp.

    Google Scholar 

  • Womersley, H. B. S., 1981. Biogeography of Australasian marine macroalgae. In: Marine botany. Ed. by M. N. Clayton & R. J. King. Longman Cheshire, Melbourne, 292–307.

    Google Scholar 

  • Yarish, C., Breeman, A. M. & Hoek, C. van den, 1984. Temperature, light and photoperiod responses of some northeast American and west European endemic rhodophytes in relation to their geographic distribution. — Helgoländer Meeresunters.38, 273–304.

    Article  Google Scholar 

  • Yarish, C., Breeman, A. M. & Hoek, C. van den, 1986. Survival strategies and temperature responses of seaweeds belonging to different biogeographic distribution groups. — Botanica mar.29, 215–230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garbary, D. A critique of traditional approaches to seaweed distribution in light of the development of vicariance biogeography. Helgolander Meeresunters 41, 235–244 (1987). https://doi.org/10.1007/BF02366189

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02366189

Keywords