Skip to main content
  • Published:

Effects of nutrition (herbivore vs carnivore) on energy charge and nucleotide composition inHyas araneus larvae

Abstract

Growth rate expressed as dry weight, elemetnal composition (C, N, H), protein content and nucleotide composition (ATP, ADP, AMP, CTP, GTP and UTP) as well as adenosine were measured in laboratory culturedHyas araneus larvae fed two different diets. One group was fed freshly hatchedArtemia sp. nauplii, the other the diatomOdontella (Biddulphia) sinensis. Growth rate was reduced in theO. sinensis-fed group, reaching 20 to 50% of the growth rate ofArtemia-fed larvae. In all cases, some further development to the next instar occurred when larvae were fedO. sinensis, although at reduced levels compared toArtemia-fed larvae. The adenylic energy charge was quite similar for the two nutritional conditions tested and therefore does not reflect the reduced growth rate inO. sinensis-fed larvae. The individual nucleotide content was clearly reduced inO. sinensis-fed larvae, reflecting the nutritional conditions already during early developmental periods. These reduced amount of nucleotides inO. sinensis-fed larvae were most obvious when adenylic nucleotide contents were pooled. Pooled adenylic nucleotides were found to be correlated with the individual content of carbon and protein, showing significant differences at both nutritional conditions tested.

Literature Cited

  • Anger, K., 1983. Moult cycle and morphogenesis inHyas araneus larvae (Decapoda, Majidae) reared in the laboratory. — Helgoländer Meeresunters.36 285–302.

    Google Scholar 

  • Anger, K., Laasch, N., Püschel, C. & Schorn, F., 1983. Changes in biomass and chemical composition of spider crab (Hyas araneus) larvae reared in the laboratory. — Mar. Ecol. Prog. Ser.12, 91–101.

    CAS  Google Scholar 

  • Anger, K., Harms, J., Püschel, C. & Seeger, B., 1989. Physiological and biochemical changes during the larval development of a brachyuran crab reared under constant conditions in the laboratory. —Helgoländer Meeresunters.43, 225–244.

    Google Scholar 

  • Atkinson, D. E. & Walton, G. M., 1967. Adenosine triphosphate conservation in metabolic regulation. — J. biol. Chem.242, 3239–3241.

    CAS  PubMed  Google Scholar 

  • Atkinson, D. E., 1968. The energy charge of the adenylate pool as a regulatory parameter with feedback modifers. — Biochemistry7, 4030–4034.

    Article  CAS  PubMed  Google Scholar 

  • Atkinson, D. E., 1977. Cellular energy metabolism and its regulation. Acad. Press, New York, 293 pp.

    Google Scholar 

  • Bomsel, J. L. & Pradet, A., 1967. Study of adenosine 5′ mono-, di-, triphosphate in plant tissue. IV-Regulation of the level of nucleotides in vivo by adenylate kinase: theoretical and experimental study. — Biochim. biophys. Acta162, 230–242.

    Google Scholar 

  • Chapman, A. G., Miller, A. & Atkinson, D. E., 1976. Role of the adenylate deaminase reaction in regulation of adenine nucleotide metabolism in ehrlich ascites tumor cells. — Cancer Res.36, 1144–1150.

    CAS  PubMed  Google Scholar 

  • Dehn, P. F., 1985. Effects of laboratory holding and short-term nutritional deprivation on energy metabolism of red-ear sunfish,Lepomis microlopus. — Tex. J. Sci.26S, 67.

    Google Scholar 

  • Dickson, G. W. & Franz, R., 1980. Respiration rates, ATP turnover and adenylate energy charge in excised gills of surface and cave crayfish. — Comp. Biochem. Physiol.65A, 375–379.

    Google Scholar 

  • Dickson, G. W. & Giesy, J. P., 1982. The effects of starvation on muscle phosphoadenylate concentration and adenylate energy charge on surface and cave crayfish. — Comp. Biochem. Physiol.71A, 357–361.

    CAS  Google Scholar 

  • Drach, P., 1939. Mue et cycle d’intermue chez les Crustacés Décapodes. — Annls Inst. océanogr., Monaco19, 103–391.

    Google Scholar 

  • Drach, P. & Tschernigovtzeff, C., 1967. Sur la méthode de la détermination des stades d’intermue et son application générale aux Crustacés. — Vie Milieu (A)18, 595–610.

    Google Scholar 

  • Driedzic, W. R. & Hochachka, P., 1976. Control of energy metabolism in fish white muscle. — Am. J. Physiol.230, 579–582.

    CAS  PubMed  Google Scholar 

  • Harms, J. & Seeger, B., 1989. Larval development and survival in seven decapod species (Crustacea) in relation to laboratory diet. — J. exp. mar. Biol. Ecol.133, 129–139.

    Article  Google Scholar 

  • Harms, J. & Anger, K., 1990. Effects of nutrition (herbivore vs. carnivore) on the energy budget of a brachyuran megalopa. — Thermochim. Acta172, 229–240.

    Article  CAS  Google Scholar 

  • Harms, J., Anger, K., Klaus, S. & Seeger, B., 1990a. Nutritional effects on ingestion rate, digestive enzyme activity, growth, and biochemical composition ofHyas araneus L. (Decapoda: Majidae) larvae. — J. exp. mar. Biol. Ecol.145, 233–265.

    Google Scholar 

  • Harms, J., Moal, J., LeCoz, J. R., Daniel, J. Y. & Samain, J. F., 1990b. Nucleotide composition and energy charge in growing and starving zoea I ofCarcinus maenas (Decapoda: Portunidae). —Comp. Biochem. Physiol.96B, 404–414.

    Google Scholar 

  • Ivanovici, A. M., 1980a. The adenylate energy charge in the estuarine mollusc (Pyrazus ebeninus). Laboratory studies of responses to salinity and temperature. — Comp. Biochem. Physiol.66A, 43–55.

    Google Scholar 

  • Ivanovici, A. M., 1980b. Application of adenylate energy charge to problems of environmental impact assessment in aquatic organisms. — Helgoländer Meeresunters.33, 556–565.

    Google Scholar 

  • Lowry, O. M., Rosebrough, N. I., Farrant, A. L. & Randall, R. J., 1951. Protein measurements with the Folin phenol reagent. — J. biol. Chem.193, 263–275.

    Google Scholar 

  • Moal, J., Le Coz, J. R., Samain, J. F. & Daniel, J. H., 1989. Nucleotides in bivalves: Extraction and analysis by high performance liquid chromatography (HPLC). — Comp. Biochem. Physiol.93B, 307–316.

    CAS  Google Scholar 

  • Romano, J. C. & Daumas, R., 1981. Adenosine nucleotide “energy charge” ratios as an ecophysiological index for microplankton communities. — Mar. Biol.62, 281–296.

    Article  CAS  Google Scholar 

  • Saether, O. & Mohr, V., 1987. Chemical composition of North Atlantic krill. — Comp. Biochem. Physiol.88B, 157–164.

    CAS  Google Scholar 

  • Schirf, V. R., Turner, P., Selby, L., Hannapel, C., De La Cruz, P. & Dehn, P. F., 1987. Nutritional status and energy metabolism of crayfish (Procambarus clarkii, Girard) muscle and hepatopancreas. — Comp. Biochem. Physiol.88A, 383–386.

    CAS  Google Scholar 

  • Vetter, R. D. & Hodson, R. E., 1982. Use of adenylate concentrations and adenylate energy charge as indicators of hypoxic stress in estuarine fish. — Can. J. Fish. aquat. Sci.39, 535–541.

    CAS  Google Scholar 

  • Vetter, R. D., Hwang, H.-M. & Hodson, R. E., 1986. Comparison of glycogen and adenine nucleotides as indicators of metabolic stress in mummichogs. — Trans. Am. Fish. Soc.115, 47–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harms, J. Effects of nutrition (herbivore vs carnivore) on energy charge and nucleotide composition inHyas araneus larvae. Helgolander Meeresunters 46, 29–44 (1992). https://doi.org/10.1007/BF02366210

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02366210

Keywords