Skip to main content
  • Published:

Comparative studies on the thermal properties of a trypsin-like protease intwo hermit crabs

Abstract

The thermal characteristics of a trypsin-like protease were surveyed comparatively in two hermit crabs,Pagurus bernhardus (Linné) 1758 from the German Bight, andClibanarius striolatus Dana 1852 from the Western Indo-Pacific. In both enzymes, activity is maximal at a temperature around 50°C. Compared withPagurus, the protease inClibanarius is characterized by a considerably higher stability at elevated temperatures. Furthermore, the latter is less inhibited by two specific trypsin inhibitors. On an energetical level, distinct differences between the species are displayed. In both species, Km is strongly affected by temperature; lowest Km values do not coincide with the mean environmental temperature. The affinity ofPagurus protease for substrate at 40°C is about 17 times that at 0°C; inClibanarius this factor amounts only to 4.4. At temperatures >10°C, activation energy in the tropical speciesClibanarius is distinctly higher (28.3 kJ·mol−1) than in the boreal speciesPagurus (20.0 kJ·mol−1).

Literature Cited

  • Baldwin, J. & Hochachka, P. W., 1970. Functional significance of isoenzymes in thermal acclimatization. — Biochem. J.116, 883–887.

    CAS  PubMed  Google Scholar 

  • Dittrich, B., 1990. Temperature dependence of the activities of trypsin-like proteases in decapod crustaceans from different habitats. — Naturwissenschaften77, 491–492.

    Article  CAS  Google Scholar 

  • Dittrich, B., 1992. Thermal acclimation and kinetics of a trypsin-like protease in decapod crustaceans. — J. comp. Physiol. (B)162, 38–46.

    CAS  Google Scholar 

  • George, R. Y., 1985. Metabolism of Antarctic krill,Euphausia superba, and its tropho-dynamic implications. In: Antarctic nutrient cycles and food webs. Ed. by W. R. Siegfried, P. R. Condy & R. M. Laws, Springer, Berlin, 323–329.

    Google Scholar 

  • Hazel, J., 1972. The effect of temperature acclimation upon succinic dehydrogenase activity from the epaxial muscle of the common goldfish (Carassius auratus L.) — II. Lipid reactivation of the soluble enzyme. — Comp. Biochem. Physiol.43B, 863–882.

    Google Scholar 

  • Hazel, J. & Prosser, C. L., 1970. Interpretation of inverse acclimation to temperature. — Z. vergl. Physiol.67, 217–228.

    Article  Google Scholar 

  • Hochachka, P. W. & Lewis, J. K., 1970. Enzyme variants in thermal acclimation. — J. biol. Chem.245, 6567–6573.

    CAS  PubMed  Google Scholar 

  • Hochachka, P. W. & Lewis, J. K., 1971. Interacting effects of pH and temperature on the Km values for fish tissue lactate dehydrogenase. — Comp. Biochem. Physiol.38B, 925–933.

    Google Scholar 

  • Johnston, I. A. & Walesby, N. J., 1979. Evolutionary temperature adaptation and the calcium regulation of fish actomyosin ATPases. — J. comp. Physiol.129, 169–177.

    CAS  Google Scholar 

  • Johnston, I. A., Walesby, N. J., Davison, W. & Goldspink, G., 1975. Temperature adaptation in myosin of Antarctic fish. — Nature, Lond.,254, 74–75.

    Article  CAS  Google Scholar 

  • Osnes, K. K. & Mohr, V., 1985. On the purification and characterization of three anionic, serine-type peptide hydrolases from Antarctic krill,Euphausia superba. — Comp. Biochem. Physiol.82B, 607–619.

    CAS  Google Scholar 

  • Scholander, P. F., Flagg, W., Walters, V. & Irving, L., 1953. Climatic adaptation in Arctic and tropical poikilotherms. — Physiol. Zool.26, 67–92.

    Google Scholar 

  • Shaklee, J. B., Christiansen, J. A., Sidell, B., Prosser, C. L. & Whitt, G. S., 1977. Molecular aspects of temperature acclimation in fish: contributions of changes in enzyme activities and isozyme patterns to metabolic reorganization in the green sunfish. — J. exp. Zool.201, 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Smith, C. L., 1973a. Thermostability of some mitochondrial enzymes of lower vertebrates — I. General survey. — Comp. Biochem. Physiol.44B, 779–788.

    Google Scholar 

  • Smith, C. L., 1973b. Thermostability of some mitochondrial enzymes of lower vertebrates — II. Freshwater teleosts. — Comp. Biochem. Physiol.44B, 789–801.

    Google Scholar 

  • Somero, G. N., 1969. Enzymic mechanisms of temperature compensation: immediate and evolutionary effects of temperature on enzymes of aquatic poikilotherms. — Am. Nat.103, 517–530.

    Article  CAS  Google Scholar 

  • Somero, G. N. & Hochachka, P. W., 1968. The effect of temperature on catalytic and regulatory functions of pyruvate kinases of the rainbow trout and the Antarctic fishTrematomus bernacchii. — Biochem. J.110, 395–400.

    CAS  PubMed  Google Scholar 

  • Somero, G. N., Giese, A. C. & Wohlschlag, D. E., 1968. Cold adaptation of the Antarctic fishTrematomus bernacchii. — Comp. Biochem. Physiol.26, 223–233.

    Google Scholar 

  • Spindler, K.-D. & Buchholz, F., 1988. Partial characterization of chitin degrading enzymes from two euphausiids,Euphausia superba andMeganyctiphanes norvegica. — Polar Biol.9, 115–122.

    Article  Google Scholar 

  • Tande, K. S., 1988. The effects of temperature on metabolic rates of different life stages ofCalanus glacialis in the Barent Sea. — Polar Biol.8, 457–461.

    Google Scholar 

  • Wodtke, E., 1976. Discontinuities in the Arrhenius plots of mitochondrial membrane-bound enzyme systems from a poikilotherm: acclimation temperature of carp affects transition temperatures. — J. comp. Physiol.110, 145–157.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This is publication no. 452 of the Alfred Wegener Institute for Polar and Marine Research at Bremerhaven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dittrich, B. Comparative studies on the thermal properties of a trypsin-like protease intwo hermit crabs. Helgolander Meeresunters 46, 45–52 (1992). https://doi.org/10.1007/BF02366211

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02366211

Keywords