Skip to main content
  • Published:

Hatching rhythms and dispersion of decapod crustacean larvae in a brackish coastal lagoon in Argentina

Abstract

Mar Chiquita, a brackish coastal lagoon in central Argentina, is inhabited by dense populations of two intertidal grapsid crab species,Cyrtograpsus angulatus andChasmagnathus granulata. During a preliminary one-year study and a subsequent intensive sampling programme (November–December 1992), the physical properties and the occurrence of decapod crustacean larvae in the surface water of the lagoon were investigated. The lagoon is characterized by highly variable physical conditions, with oligohaline waters frequently predominating over extended periods. The adjacent coastal waters show a complex pattern of semidiurnal tides that often do not influence the lagoon, due to the existence of a sandbar across its entrance. Besides frequently occurring larvae (exclusively freshly hatched zoeae and a few megalopae) of the two dominating crab species, those of three other brachyurans (Plathyxanthus crenulatus, Uca uruguayensis, Pinnixa patagonica) and of one anomuran (the porcellanidPachycheles haigae) were also found occasionally. Caridean shrimp (Palaemonetes argentinus) larvae occurred in a moderate number of samples, with a maximum density of 800·m−3. The highest larval abundance was recorded inC. angulatus, with almost 8000°m−3. Significantly moreC. angulatus andC. granulata zoeae occurred at night than during daylight conditions, and more larvae (statistically significant only in the former species) during ebb (outflowing) than during flood (inflowing) tides. In consequence, most crab zoeae were observed during nocturnal ebb, the least with diurnal flood tides. Our data suggest that crab larvae do not develop in the lagoon, where the adult populations live, but exhibit an export strategy, probably based upon exogenously coordinated egg hatching rhythms. Zoeal development must take place in coastal marine waters, from where the megalopa eventually returns for settlement and metamorphosis in the lagoon. Significantly higher larval frequency ofC. granulata in low salinities (≤12‰) and at a particular sampling site may be related to local distribution patterns of the reproducing adult population. Unlike crab larvae, those of shrimp (P. argentinus) are retained inside the lagoon, where they develop from hatching through metamorphosis. They significantly prefer low salinity and occur at the lagoon surface more often at night. These patterns cannot be explained by larval release rhythms like those in brachyuran crabs, but may reflect diel vertical migrations to the bottom. It is concluded that osmotic stress as well as predation pressure exerted by visually directed predators (small species or life-cycle stages of estuarine fishes) may be the principal selection factors for the evolution of hatching and migration rhythms in decapod larvae, and that these are characteristics of export or retention mechanisms, respectively.

Literature Cited

  • Anger, K., 1983. Moult cycle and morphogenesis inHyas araneus larvae (Decapoda, Majidae), reared in the laboratory.—Helgoländer Meeresunters.36, 285–302.

    Google Scholar 

  • Anger, K., 1987. The Do threshold: a critical point in the larval development of decapod crustaceans.—J. exp. mar. Biol. Ecol.108, 15–30.

    Article  Google Scholar 

  • Bengston, D. A., 1984. Resource partitioning byMenidia menidia andMenidia beryllina (Osteichthyes: Atherinidae).—Mar. Ecol. Prog. Ser.18, 21–30.

    Google Scholar 

  • Boschi, E. E., 1964. Los crustáceos decápodos Brachyura del litoral bonaerense (R. Argentina).—Boln Inst. Biol. mar., Mar del Plata6, 1–100.

    Google Scholar 

  • Boschi, E. E., 1981. Larvas de crustacea decapoda. In: Atlas del zooplancton del Atlántico Sudoccidental. Ed. by D. Boltovskoy. INIDEP, Mar del Plata, 699–758.

    Google Scholar 

  • Boschi, E. E., 1988. El ecosistema estuarial del Rio de la Plata (Argentina y Uruguay).—An. Inst. Cienc. Mar Limnol. Univ. nac. autón. México15, 159–182.

    Google Scholar 

  • Boschi, E. E., Scelzo, M. A. & Goldstein, B., 1967. Desarrollo larval de dos especies de Crustáceos Decápodos en el laboratorio.Pachycheles haigae Rodrigues Da Costa (Porcellanidae) yChasmagnathus granulata Dana (Grapsidae).—Boln Inst. Biol. mar., Mar del Plata12, 3–46.

    Google Scholar 

  • Bundesamt für Seeschiffahrt und Hydrographie (Ed.) 1991. Nautisches Jahrbuch oder Ephemeriden und Tafeln für das Jahr 1992 zur Bestimmung der Zeit, Länge und Breite auf See nach astronomischen Beobachtungen.—Naut. Jb., Hamb.141, 1–45.

    Google Scholar 

  • Cain, R. L. & Dean, J. M., 1976. Annual occurrence, abundance and diversity of fish in a South Carolina intertidal creek.—Mar. Biol.36, 369–379.

    Article  Google Scholar 

  • Christy, J. H. & Stancyk, S. E., 1982. Timing of larval production and flux of invertebrate larvae in a well-mixed estuary. In: Estuarine comparisons. Ed. by V. S. Kennedy. Acad. Press, New York, 489–503.

    Google Scholar 

  • Crabtree, R. E. & Dean, J. M., 1982. The structure of two South Carolina estuarine tide pool fish assemblages.—Estuaries5, 2–9.

    Google Scholar 

  • Cronin, T. W., 1982. Estuarine retention of larvae of the crabRhithropanopeus harrisii.—Estuar. coast. Shelf Sci.15, 207–220.

    Article  Google Scholar 

  • Cronin, T. W. & Forward, R. B., 1979. Tidal vertical migration: an endogenous rhythm in estuarine crab larvae.—Science, N. Y.205, 1020–1022.

    Google Scholar 

  • Cronin, T. W. & Forward, R. B., 1980. The effects of starvation on phototaxis and swimming of larvae of the crabRhithropanopeus harrisii.—Biol. Bull. mar. biol. Lab., Woods Hole158, 283–294.

    Google Scholar 

  • Cronin, T. W. & Forward, R. B., 1982. Tidally timed behaviour: effects on larval distributions in estuaries. In: Estuarine comparison, Ed. by V. S. Kennedy. Acad. Press, New York, 505–520.

    Google Scholar 

  • Cronin, T. W. & Forward, R. B., 1983. Vertical migration rhythms of newly hatched larvae of the estuarine crab,Rhithropanopeus harrisii.—Biol. Bull. mar. biol. Lab., Woods Hole165, 139–153.

    Google Scholar 

  • Cronin, T. W. & Forward, R. B., 1986. Vertical migration cycles of crab larvae and their role in larval dispersal.—Bull. mar. Sci.39, 192–201.

    Google Scholar 

  • DeCoursey, P. J., 1979. Egg hatching rhythms in three species of fiddler crabs. In: Proceedings of the 13th European Marine Biology Symposium. Ed. by E. Naylor & R. G. Hartnoll. Pergamon Press, Oxford, 399–406.

    Google Scholar 

  • DeVries, M. C. & Forward, R. B., 1989. Rhythms in larval release of the sublittoral crabNeopanope sayi and the supralittoral crabSesarma cinereum (Decapoda: Brachyura).—Mar. Biol.100, 241–248.

    Google Scholar 

  • DeVries, M. C. & Forward, R. B., 1991a. Control of egg-hatching time in crabs from different tidal heights.—J. crust. Biol.11, 29–39.

    Google Scholar 

  • DeVries, M. C. & Forward, R. B., 1991b. Mechanisms of crustacean egg hatching: evidence for enzyme release by crab embryos.—Mar. Biol.110, 281–291.

    CAS  Google Scholar 

  • DeVries, M. C., Epifanio, C. E. & Dittel, A. I., 1983a. Reproductive periodicity of the tropical crabCallinectes arcuatus Ordway in Central America.—Estuar. coast. Shelf Sci.17, 709–716.

    Google Scholar 

  • DeVries, M. C., Epifanio, C. E. & Dittel, A. I., 1983b. Lunar rhythms in the egg hatching of the subtidal crustacean:Callinectus arcuatus Ordway (Decapoda: Brachyura).—Estuar. coast. Shelf Sci.17, 717–724.

    Google Scholar 

  • Drach, P., 1939. Mue et cycle d’intermue chez la Crustacés décapodes.—Annls Inst. océanogr., Monaco19, 103–391.

    Google Scholar 

  • Epifanio, C. E. & Dittel, A. I., 1982. Comparison of dispersal of crab larvae in Delaware Bay, USA, and the Gulf of Nicoya, Central America. In: Estuarine comparisons. Ed. by V. S. Kennedy. Acad. Press. New York, 477–487.

    Google Scholar 

  • Fasano, J. L., Hernández, M. A., Isla, F. I. & Schnack, E. J., 1982. Aspectos evolutivos y ambientales de la laguna Mar Chiquita (provincia de Buenos Aires, Argentina).—Oceanologica Acta1982 (Nr. spéc.), 285–292.

    Google Scholar 

  • Forward, R. B., 1987. Larval release rhythms of decapod crustaceans: an overview.—Bull. mar. Sci.41, 165–176.

    Google Scholar 

  • Forward, R. B. & Lohmann, K. J., 1983. Control of egg hatching in the crabRhithropanopeus harrisii (Gould).—Biol. Bull. mar. biol. Lab., Woods Hole165, 154–166.

    Google Scholar 

  • Forward, R. B., Lohmann, K. & Cronin, T. W., 1982. Rhythms in larval release by an estuarine crab (Rhithropanopeus harrisii).—Biol. Bull. mar. biol. Lab., Woods Hole163, 287–300.

    Google Scholar 

  • Forward, R. B., Douglass, J. K. & Kenney, B. E., 1986. Entrainment of the larval release rhythm of the crabRhithropanopeus harrisii (Brachyura: Xanthidae) by cycles in salinity change.—Mar. Biol.90, 537–544.

    Article  Google Scholar 

  • Gliwicz, Z. M., 1986. A lunar cycle in zooplankton.—Ecology67, 883–898.

    Google Scholar 

  • Hartnoll, R. G., 1988, Evolution, systematics, and geographical distribution. In: Biology of the land crabs. Ed. by W. W. Burggren & B. R. McMahon. Cambridge Univ. Press, New York, 6–54.

    Google Scholar 

  • McErlean, A. J., O’Conner, S. G., Milhursky, J. A. & Gibson, C. I., 1972. Abundance, diversity and seasonal patterns of estuarine fish populations.—Estuar. coast. mar. Sci.1, 19–36.

    Google Scholar 

  • Menú-Marque, S. A., 1973. Desarrollo larval dePalaemonetes artentinus (Nobili, 1901) en el laboratorio (Crustacea, Caridea, Palaemonidae).—Physis, B. Aires (Sec. B)32, 149–169.

    Google Scholar 

  • Millikin, M. R. & Williams, A. B., 1984. Synopsis of biological data on the blue crab,Callinectes sapidus Rathbun.—NOAA Tech. Rep. NMFS1, 1–39.

    Google Scholar 

  • Morgan, S. G., 1987a. Adaptive significance of hatching rhythms and dispersal patterns of estuarine crab larvae: avoidance of physiological stress by larval export?—J. exp. mar. Biol. Ecol.113, 71–78.

    Article  Google Scholar 

  • Morgan, S. G., 1987b. Morphological and behavioral antipredatory adaptations of decapod zoeae.—Oecologia73, 393–400.

    Article  Google Scholar 

  • Naylor, E., 1976. Rhythmic behaviour and reproduction in marine animals. In: Adaptation to environment. Ed. by R. R. Newell. Butterworth, London, 393–429.

    Google Scholar 

  • Olivier, S., Escofet, A., Penchaszadeh, P. & Orensanz, J., 1972. Estudios ecológicos de la región estuarial de Mar Chiquita (Bs. As. Argentina). I. Las comunidades bentónicas.—An. Soc. cient. Argent.193, 237–262.

    Google Scholar 

  • Remane, A., 1971. Ecology of brackish water. In: Biology of brackish water. Ed. by A. Remane & C. Schlieper. Wiley, New York, 210 pp.

    Google Scholar 

  • Rittschof, D., Forward, R. B. & Mott, D., 1985. Larval release in the crabRhithropanopeus harrisii (Gould): chemical cues from hatching eggs.—Chem. Senses10, 567–577.

    CAS  Google Scholar 

  • Rittschof, D., Forward, R. B., Simons, D. A., Reddy, P. A. & Erickson, B. W., 1989. Peptide analogs of the mud crab pumping pheromone: structure-function studies—Chem. Senses14, 137–148.

    CAS  Google Scholar 

  • Saigusa, M. & Hidaka, T., 1978. Semilunar rhythm in the zoea-release activity of the land crabsSesarma.—Oecologia37, 163–176.

    Article  Google Scholar 

  • Sandifer, P. A., 1973. Distribution and abundance of decapod crustacean larvae in the York River estuary and adjacent lower Cheaspeake Bay, Virginia, 1968–1969.—Chesapeake Sci.14, 235–257.

    Google Scholar 

  • Sandifer, P. A., 1975. The role of pelagic larvae in recruitment to populations of adult decapod crustaceans in the York River estuary and adjacent lower Chesapeake Bay, Virginia.3, 269–279.

    Google Scholar 

  • Scelzo, M. A. & Lichtschein, V. B., 1979. Desarrollo larval y metamórfosis del cangrejoCyrtograpsus altimanus Rathbun, 1914 (Brachyura, Grapsidae) en laboratorio, con observaciones sobre la ecología de la especie.—Physis, B. Aires (Sec. A)38, 103–126.

    Google Scholar 

  • Smyth, P. O., 1980.Callinectes (Decapoda: Portunidae) larvae in the Middle Atlantic Bight, 1975–77.—Fish. Bull. U.S.78, 251–265.

    Google Scholar 

  • Sokal, R. R. & Rohlf, F. J., 1981. Biometry. Freeman, San Francisco, 859 pp.

    Google Scholar 

  • Spivak, E., Anger, K., Luppi, T., Bas, C. & Ismael, D., 1994. Distribution and habitat preferences of two grapsid crab species in Mar Chiquita Lagoon (Province of Buenos Aires, Argentina).—Helgoländer Meeresunters.48, 59–78.

    Article  Google Scholar 

  • Stich, H. B. & Lampert, W., 1981. Predator evasion as an explanation of diurnal vertical migration by zooplankton.—Nature, Lond.293, 396–398.

    Article  Google Scholar 

  • Subrahmanyam, C. B. & Drake, S. H., 1975. Studies on the animal communities in two north Florida salt marshes.—Bull. mar. Sci.25, 445–465.

    Google Scholar 

  • Thayer, G. W., Hoss, D. E., Kjelson, M. A., Hettler, W. F. & Lacroix, M. W., 1974. Biomass of zooplankton in the Newport River estuary and the influence of post-larval fishes.—Chesapeake Sci.15, 9–16.

    Google Scholar 

  • Truesdale, F. M. & Adryszak, B. L., 1983. Occurrence and distribution of reptant decapod crustacean larvae in neritic Louisiana waters: July 1976.—Contr. mar. Sci.26, 37–53.

    Google Scholar 

  • Weinstein, M. P., 1979. Shallow marsh habitats as primary nurseries for fishes and shellfish, Cape Fear River, North Carolina.—Fish Bull. U. S.77, 339–356.

    Google Scholar 

  • Zaret, T. M. & Suffern, J. S., 1976. Vertical migration in zooplankton as a predator avoidance mechnism.—Limnol. Oceanogr.21, 804–813.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anger, K., Spivak, E., Bas, C. et al. Hatching rhythms and dispersion of decapod crustacean larvae in a brackish coastal lagoon in Argentina. Helgolander Meeresunters 48, 445–466 (1994). https://doi.org/10.1007/BF02366257

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02366257

Keywords