Skip to main content
  • Published:

Benthic grazers and suspension feeders: Which one assumes the energetic dominance in Königshafen?

Abstract

Size-frequency histograms of biomass, secondary production, respiration and energy flow of 4 dominant macrobenthic communities of the intertidal bay of Königshafen were analysed and compared. In the shallow sandy flats (Nereis-Corophium-belt [N.C.-belt], seagrass-bed andArenicola-flat) a bimodal size-frequency histogram of biomass, secondary production, respiration and energy flow was found with a first peak formed by individuals within a size range of 0.10 to 0.32 mg ash free dry weight (AFDW). In this size range, the small prosobranchHydrobia ulvae was the dominant species, showing maximal biomass as well as secondary production, respiration and energy flow in the seagrass-bed. The second peak on the size-frequency histogram was formed by the polychaeteNereis diversicolor with individual weights of 10 to 18 mg AFDW in theN.C.-belt, and byArenicola marina with individual weights of 100 to 562 mg AFDW in both of the other sand flats. Biomass, productivity, respiration and energy flow of these polychaetes increased from theNereis-Corophium-belt, to the seagrass-bed, and to theArenicola-flat. Mussel beds surpassed all other communities in biomass and the functional parameters mentioned above. Size-frequency histograms of these parameters were distinctly unimodal with a maximum at an individual size of 562 to 1000 mg AFDW. This size group was dominated by adult specimens ofMytilus edulis. Averaged over the total area, the size-frequency histogram of energy flow of all intertidal flats of Königshafen showed one peak built byHydrobia ulvae and a second one, mainly formed byM. edulis. Assuming that up to 10% of the intertidal area is covered by mussel beds, the maximum of the size-specific energy flow will be formed byMytilus. When only 1% is covered by mussel beds, then the energy flow is dominated byH. ulvae. Both animals represent different trophic types and their dominance in energy flow has consequences for the food web and the carbon flow of the total area. If the energy flow of the macrozoobenthos of Königshafen is dominated byM. edulis, then the primary energy has to be gained from the pelagic primary production and the total ecosystem will be dependent on energy input from the North Sea and deeper parts of the adjacent Wadden Sea. In the case of a dominance ofH. ulvae, the energy flow of Königshafen is mainly based on autochthonous primary production.

Literature Cited

  • Asmus, H., 1984. Freilanduntersuchungen zur Sekundärproduktion und Respiration benthischer Gemeinschaften im Wattenmeer der Nordsee. — Ber. Inst. Meeresk. Kiel122, 1–171.

    Google Scholar 

  • Asmus, H., 1987. Secondary production of an intertidal mussel bed community related to its storage and turnover compartments. — Mar. Ecol. Prog. Ser.39, 251–266.

    Google Scholar 

  • Asmus, H. & Asmus, R., 1985. The importance of grazing food chain for energy flow and production in three intertidal sand bottom communities of the northern Wadden Sea. — Helgoländer Meeresunters.39, 273–301.

    Article  Google Scholar 

  • Asmus, H. & Asmus, R. M., 1990. Trophic relationships in tidal flat areas: to what extent are tidal flats dependent on imported food?. — Neth. J. Sea Res.27, 93–99.

    Google Scholar 

  • Banse, K. & Mosher, S., 1980. Adult body mass and annual production/biomass relationships of field populations. — Ecol. Monogr.50 (3), 355–379.

    Google Scholar 

  • Barry, J. P. & Tegner, M. J., 1990. Interring demographic processes from size-frequency distributions: simple models indicate specific patterns of growth and mortality. — Fish. Bull.88, 13–19.

    Google Scholar 

  • Baumfalk, Y. A., 1979. On the pumping activity ofArenicola marina. — Neth. J. Sea Res.13(3/4), 422–427.

    Google Scholar 

  • Beukema, J. J., 1981. Quantitative data on the benthos of the Wadden Sea proper. In: Invertebrates of the Wadden Sea. Ed. by N. Dankers, H. Kühl & W. J. Wolff. Balkema, Rotterdam, 134–142.

    Google Scholar 

  • Beukema, J. J., 1991. The abundance of shore crabsCarcinus maenas (L.) on a tidal flat in the Wadden Sea after cold and mild winters. — J. exp. mar. Biol. Ecol.153, 97–113.

    Article  Google Scholar 

  • Beukema, J. J., 1992. Dynamics of juvenile shrimpCrangon crangon in a tidal-flat nursery of the Wadden Sea after mild and cold winters. — Mar. Ecol. Prog. Ser.83, 157–165.

    Google Scholar 

  • Blackburn, T. M., Brown, V. K., Doube, B. M., Greenwood, J. D., Lawton, J. H. & Stork, N. E., 1993. The relationship between abundance and body size in natural animal assemblages. — J. Anim. Ecol.62, 519–528.

    Google Scholar 

  • Boere, G. C. & Smit, C. J., 1980. Curlew (Numenius arquata). In: Birds of the Wadden Sea. Ed. by C. J. Smit & W. J. Wolff. Balkema, Rotterdam, 179–188.

    Google Scholar 

  • Boudreaux, P. R. & Dickie, L. M., 1992. Biomass spectra of aquatic ecosystems in relation to fishieries yield. — Can. J. Fish. aquat. Sci.49, 1528–1538.

    Google Scholar 

  • Brey, T., 1990. Estimating productivity of macrobenthic invertebrates from biomass and mean individual weight. — Meeresforsch.32, 329–343.

    Google Scholar 

  • Brown, J. H. & Maurer, B. A., 1986. Body size, ecological dominance and Copés rule. — Nature, Lond.324, 248–250.

    Google Scholar 

  • Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldana, J., 1993. Body sizes of animal predators and animal prey in food webs. — J. Anim. Ecol.62, 67–78.

    Google Scholar 

  • Crisp, D. J., 1984. Energy flow measurements. In: Methods for the study of marine benthos. Ed. by N. A. Holme & A. D. Mc Intyre. Blackwell, Oxford, 284–372.

    Google Scholar 

  • Damuth, J. 1987. Interspecific allometry of population density in mammals and other animals: the independence of body mass and population energy use. — Biol. J. Linn. Soc.31, 193–246.

    Google Scholar 

  • Damuth, J., 1991. Of size and abundance. — Nature, Lond.351, 268–269.

    Article  Google Scholar 

  • Dankers, N. & Koelemaij, K., 1989. Variations in the mussel population of the Dutch Wadden Sea in relation to monitoring of other ecological parameters. — Helgoländer Meeresunters.43, 529–535.

    Article  Google Scholar 

  • Edgar, G. J., 1990a. The use of the size structure of benthic macrofaunal communities to estimate faunal biomass and secondary production. — J. exp. mar. Biol. Ecol.137, 195–214.

    Google Scholar 

  • Edgar, G. J., 1990b. The influence of plant structure on the species richness, biomass and secondary production of macrofaunal assemblages in Western Australian seagrass beds. — J. exp. mar. Biol. Ecol.137, 215–240.

    Google Scholar 

  • Ehlert, W., 1964. Zur Ökologie und Biologie der Ernährung einiger Limikolenarten. — J. Orn.105, 1–53.

    Article  Google Scholar 

  • Fauchald, K. & Jumars, P. A., 1979. The diet of worms: a study of polychaete feeding guilds. —Oceanogr. mar. Biol. a. Rev.17, 193–284.

    Google Scholar 

  • Fenchel, T. & Kofoed, L. H., 1976. Evidence for exploitative interspecific competition in mud snails (Hydrobiidae). — Oikos27, 367–376.

    Google Scholar 

  • Gerlach, S. A., Hahn, A. E. & Schrage, M., 1985. Size spectra of benthic biomass and metabolism. —Mar. Ecol. Prog. Ser.26, 161–173.

    Google Scholar 

  • Glutz von Blotzheim, U. N., Bauer, K. M. & Bezzel, E., 1975. Handbuch der Vögel Mitteleuropas. Akad. Verl. Ges., Wiesbaden, 840 pp.

    Google Scholar 

  • Goethe, F., 1980. ShelduckTadorna tadorna (L.). In: Birds of the Wadden Sea. Ed. by C. J. Smit & W. J. Wolff. Balkema, Rotterdam, 37–48.

    Google Scholar 

  • Griffiths, D., 1992. Size, abundance and energy use in communities. — J. Anim. Ecol.61, 307–315.

    Google Scholar 

  • Hartmann-Schröder, G., 1981. The ragwormNereis diversicolor. In: Invertebrates of the Wadden Sea. Ed. by N. Dankers, H. Kühl & W. J. Wolff. Balkema, Rotterdam, 113–114.

    Google Scholar 

  • Harvey, M., & Vincent, B., 1990. Density, size distribution, energy allocation and seasonal variations in shell and soft tissue growth at two tidal levels of aMacoma balthica (L.) population. — J. exp. mar. Biol. Ecol.142, 151–168.

    Article  Google Scholar 

  • Heip, C., Herman, R. & Vincx, M., 1984. Variability and productivity of meiobenthos in the Southern Bight of the North Sea. — Rapp. P.-v. Réun. Cons. int. Explor. Mer.183, 51–56.

    Google Scholar 

  • Höfmann, H., & Hoerschelmann, H., 1969. Nahrungsuntersuchungen bei Limikolen durch Mageninhaltsanalysen. — Corax3, 7–22.

    Google Scholar 

  • Jacobsen, V. H., 1967. The feeding of the lugwormArenicola marina (L.). Quantitative studies. —Ophelia4, 91–109.

    Google Scholar 

  • Jansson, B. O. & Wulff, F., 1977. Ecosystem analysis of a shallow sound in the northern Baltic — a joint study by the Askö group. — Contr. Askö Lab. Univ. Stockh.18, 1–160.

    Google Scholar 

  • Jensen, K. T. & Siegismund, H. R., 1980. The importance of diatoms and bacteria in the diet ofHydrobia-species. — Ophelia (Suppl.)1, 193–199.

    Google Scholar 

  • Jonge, V. de, 1992. Physical processes and dynamics of microphytobenthos in the Ems Estuary (The Netherlands). Thesis Univ. Groningen, 176 pp.

  • Krüger, F., 1964. Messungen der Pumpaktivität vonArenicola marina (L.) im Watt. — Helgoländer wiss. Meeresunters.11, 70–91.

    Article  Google Scholar 

  • Lauckner, G., 1986. Ecological effects of larval trematode infestation on littoral marine invertebrate populations. In: Parasitology-Quo vadit? Ed. by M. J. Howell. Australian Academy of Sciences, Canberra, 391–398. (Proc. 6th Int Congr. Parasitol.)

    Google Scholar 

  • Morse, D. R., Stork, N. E. & Lawton, J. H., 1988. Species number, species abundance and body length relationships of arboreal beetles in Bornean lowland rain forest trees. — Ecol. Ent.13, 25–37.

    Google Scholar 

  • Mouritsen, K. N. & Jensen, K. T., 1992. Choice of microhabitat in tactile foraging dunlinsCalidris alpina: the importance of sediment penetrability. — Mar. Ecol. Prog. Ser.85, 1–8.

    Google Scholar 

  • Piersma, T., Engelmoer, H., Altenburg, W. & Mes, R., 1980. A wader expedition to Mauretania. — Bull. Wader Stud. Group29, 14.

    Google Scholar 

  • Pihl, L., 1985. Food selection and consumption of mobile epibenthic fauna in shallow marine areas. —Mar. Ecol. Prog. Ser.22, 169–179.

    Google Scholar 

  • Pihl, L. & Rosenberg, R., 1984. Food selection and consumption of the shrimpCrangon crangon in some shallow marine areas in western Sweden. — Mar. Ecol. Prog. Ser.15, 159–168.

    Google Scholar 

  • Plagmann, J., 1939. Ernährungsbiologie der GarneleCrangon vulgaris. — Helgoländer wiss. Meeresunters.2, 113–162.

    Article  Google Scholar 

  • Raffaelli, D. & Milne, H., 1987. An experimental investigation of the effects of shorebird and flatfish predation on estuarine invertebrates. — Estuar. coast. Shelf Sci.24, 1–13.

    Google Scholar 

  • Reise, K., 1978. Experiments on epibenthic predation in the Wadden Sea. — Helgoländer wiss. Meeresunters.31, 55–101.

    Article  Google Scholar 

  • Reise, K., 1981. The role of predation on intertidal flats. In: Invertebrates of the Wadden Sea. Ed. by N. Dankers, H. Kühl & W. J. Wolff. Balkema, Rotterdam, 105–107.

    Google Scholar 

  • Reise, K., 1985. Tidal flat ecology. Springer, Berlin, 191 pp.

    Google Scholar 

  • Reise, K., Herre, E. & Sturm, M., 1994. Biomass and abundance of macrofauna in intertidal sediments of Königshafen in the northern Wadden Sea. — Helgoländer Meeresunters.48, 201–215.

    Google Scholar 

  • Remmert, H., 1980. Ökologie. Springer, Berlin, 304 pp.

    Google Scholar 

  • Riisgard, H. U., Vedel, A., Boye H. & Larsen, P. S., 1992. Filter-net structure and pumping activity in the polychaeteNereis diversicolor: effects of temperature and pump-modelling. — Mar. Ecol. Prog. Ser.83, 79–89.

    Google Scholar 

  • Schwinghamer, P., Hargrave, B., Peer, D. & Hawkins, C. M., 1986. Partitioning of production and respiration among size groups of organisms in an intertidal benthic community. — Mar. Ecol. Prog. Ser.31, 131–142.

    Google Scholar 

  • Smith, P. C. & Evans, P. R., 1973. Studies of shorebirds at Lindisfarne, Northumberland. I. Feeding ecology and behaviour of the bar-tailed godwit. — Wildfowl24, 135–139.

    Google Scholar 

  • Vlas, J. de, 1979. Secondary production by tail regeneration in a tidal flat population of lugworms (Arenicola marina), cropped by flatfish. — Neth. J. Sea Res.13, 362–393.

    Google Scholar 

  • Wolff, W. J. & Zijlstra, J. J., 1981. The common shrimpCrangon crangon. In: Invertebrates of the Wadden Sea. Ed. by N. Dankers, H. Kühl & W. J. Wolff. Balkema, Rotterdam, 122–123.

    Google Scholar 

  • Zwarts, L. & Blomert, A.-M., 1992. Why knotCalidris canutus takes medium-sizedMacoma balthica when six prey species are available. — Mar. Ecol. Prog. Ser.83, 113–128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asmus, H. Benthic grazers and suspension feeders: Which one assumes the energetic dominance in Königshafen?. Helgolander Meeresunters 48, 217–231 (1994). https://doi.org/10.1007/BF02367037

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367037

Keywords