Skip to main content
  • Published:

Grazing on green algae by the periwinkleLittorina littorea in the Wadden Sea

Abstract

On sedimentary tidal flats in the Wadden Sea near the Island of Sylt, the periwinkleLittorina littorea occurred preferentially on clusters and beds of mussels and on shell beds (100 to 350 m−2), achieved moderate densities on green algal patches or mats (20 to 50 m−2), and remained rare on bare sediments (<5 m−2). Green algae covering>10% of sediment surface appeared in summer on approximately one third of the tidal zone, mainly in the upper and sheltered parts and almost never on mussel and shell beds. In feeding experiments,L. littorea ingested more of the dominant alge,Enteromorpha, than ofUlva, irrespective of whether or not algae were fresh or decaying. The tough thalli ofChaetomorpha were hardly consumed. Snails feeding onEnteromorpha produced fecal pellets from which new growth ofEnteromorpha started. In the absence of periwinkles,Enteromorpha developed on mussels and the attached fucoids. Experimentally increased snail densities on sediments prevented green algal development, but the snails were unable to graze down established algal mats. It is concluded that natural densities ofL. littorea hardly affect the ephemeral mass development of green algae on sediments. However, where the snails occur at high densities, i.e. on mussel beds, green algal development may be prevented.

Literature Cited

  • Abele-Oeschger, D. & Theede, H., 1991. Digestion of algal pigments by the common periwinkleLittorina littorea I. (Gastropoda). — J. exp. mar. Biol. Ecol.147, 177–184.

    Article  CAS  Google Scholar 

  • Austen, I., 1990. Geologisch-sedimentologische Kartierung des Königshafens (List auf Sylt) und Untersuchung seiner Sedimente. Dipl.—Arb., Univ. Kiel, 99pp.

  • Bandel, K., 1974. Studies on Littorinidae from the Atlantic. — Veliger17(2), 92–114.

    Google Scholar 

  • Bertness, M. D., 1984. Habitat and community modification by an introduced herbivorous snail. — Ecology65 (2), 370–381.

    Google Scholar 

  • Brenner, D., Valiela, I. & Raalte, C. D. van, 1976. Grazing byTalorchestia longicornis on an algal mat in a New England salt marsh. — J. exp. mar. Biol. Ecol.22, 161–169.

    Article  Google Scholar 

  • Cates, R. G. & Orians, G. H., 1975. Successional status and the palatability of plants to generalized herbivores. — Ecology56, 410–418.

    Google Scholar 

  • Hull, S. C., 1987. Macroalgal mats and species abundance: a field experiment. — Estuar. coast. Shelf Sci.25, 519–532.

    Article  Google Scholar 

  • Hylleberg, J. & Henriksen, K., 1980. The central role of bioturbation in sediment mineralization and element re-cycling. — Ophelia (Suppl.)1, 1–16.

    CAS  Google Scholar 

  • Jensen, K. T. & Siegismund, H. R., 1980. The importance of diatoms and bacteria in the diet ofHydrobia-species. — Ophelia (Suppl.)1, 193–199.

    Google Scholar 

  • Kornmann, P., 1952. Die Algenvegetation von List auf Sylt. — Helgoländer wiss. Meeresunters.4, 55–61.

    Article  Google Scholar 

  • Lein, T. E., 1980. The effects ofLittorina littorea L. (Gastropoda) grazing on littoral green algae in the inner Oslo-Fjord, Norway. — Sarsia65, 87–92.

    Google Scholar 

  • Levinton, J. S. & McCartney, M., 1991. Use of photosynthetic pigments in sediments as a tracer for sources and fates of macrophyte organic matter. — Mar. Ecol. Prog. Ser.78, 87–96.

    Google Scholar 

  • Linke, O., 1939. Die Biota des Jadebusens. — Helgoländer wiss. Meeresunters.1, 201–348.

    Article  Google Scholar 

  • Littler, M. M. & Littler, D. S., 1980. The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. — Am. Nat.116, 25–44.

    Article  Google Scholar 

  • Lubchenco, J., 1978. Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. — Am. Nat.112, 23–39.

    Article  Google Scholar 

  • Lubchenco, J., 1983.Littorina andFucus: effects of hervibores, substratum heterogeneity, and plant escapes during succession. — Ecology64, 1116–1123.

    Google Scholar 

  • Meese, R. J. & Tomich, P. A., 1992. Dots on the rocks: a comparison of percent cover estimation methods. — J. exp. mar. Biol. Ecol.165, 59–73.

    Article  Google Scholar 

  • Nicholls, D. J., Tubbs, C. R. & Haynes, F. N., 1981. The effect of green algal mats on intertidal macrobenthic communities and their predators. — Kieler Meeresforsch. (Sonderh.)5, 511–520.

    Google Scholar 

  • Nicotri, M. E., 1980. Factors involved in herbivore food preference. — J. exp. mar. Biol. Ecol.42, 13–26.

    Article  Google Scholar 

  • Nienburg, W., 1927. Zur Ökologie der Flora des Wattenmeers. 1. Der Königshafen bei List auf Sylt. — Wiss. Meeresunters. (Kiel)20, 146–196.

    Google Scholar 

  • Norton, T. A. & Manley, N. L., 1990. The characteristics of algae in relation to their vulnerability to grazing snails. In: Behavioural mechanisms of food selection. Ed. by R. N. Hughes. Springer, Berlin, 462–478.

    Google Scholar 

  • Norton, T. A., Hawkins, S. J., Manley, N. L., Williams, G. A. & Watson, D. C., 1990. Scraping a living: a review of littorinid grazing. — Hydrobiologia193, 117–138.

    Article  Google Scholar 

  • Petraitis, P. S., 1983. Grazing patterns of the periwinkle and their effect on sessile intertidal organisms. — Ecology64, 522–533.

    Google Scholar 

  • Price, L. H. & Hylleberg, J., 1982. Algal-faunal interactions in a mat ofUlva fenestra in False Bay, Washington. — Ophelia21, 75–88.

    Google Scholar 

  • Reise, K., 1983. Sewage, green algal mats anchored by lugworms, and the effects on Turbellaria and small Polychaeta. — Helgoländer Meeresunters.36, 151–162.

    Google Scholar 

  • Reise, K. & Siebert, I., 1994. Mass occurrence of green algae in the German Wadden Sea. — Dt. hydrogr. Z. (Suppl.)1, 171–180.

    Google Scholar 

  • Reise, K., Herre, E. & Sturm, M., 1989. Historical changes in the benthos of the Wadden Sea around the island of Sylt in the North Sea. — Helgoländer Meeresunters.43, 417–433.

    Google Scholar 

  • Santelices, B. & Ugarte, R., 1987. Algal life-history strategies and resistance to digestion. — Mar. Ecol. Prog. Ser.35, 267–275.

    Google Scholar 

  • Shacklock, P. F. & Doyle, R. W., 1983. Control of epiphytes in seaweed cultures using grazers. — Aquaculture31, 141–151.

    Article  Google Scholar 

  • Soulsby, P. G., Lowthion, D. & Houston, M., 1982. Effects of macroalgal mats on the ecology of intertidal mudflats. — Mar. Pollut. Bull.13 (5), 162–166.

    Google Scholar 

  • Warwick, R. M., Davey, J. T., Gee, J. M. & George, C. L., 1982. Faunistic control ofEnteromorpha blooms: a field experiment. — J. exp. mar. Biol. Ecol.56, 23–31.

    Google Scholar 

  • Watson, D. C. & Norton, T. A., 1985a. Dietary preferences of the common periwinkleLittorina littorea (L.). — J. exp. mar. Biol. Ecol.88, 193–211.

    Article  Google Scholar 

  • Watson, D. C. & Norton, T. A., 1985b. The physical characteristics of seaweed thalli as deterrents to littorine grazers. — Botanica mar.28, 383–387.

    Google Scholar 

  • Wohlenberg, E., 1937. Die Wattenmeer-Lebensgemeinschaft im Königshafen von Sylt. — Helgoländer wiss. Meeresunters.1, 1–92

    Article  Google Scholar 

  • Woodin, S. A., 1977. Algal “gardening” behaviour by nereid polychaetes: effects on soft-bottom community structure. — Mar. Biol.44, 39–42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelmsen, U., Reise, K. Grazing on green algae by the periwinkleLittorina littorea in the Wadden Sea. Helgolander Meeresunters 48, 233–242 (1994). https://doi.org/10.1007/BF02367038

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367038

Keywords