Skip to main content
  • Published:

Laboratory investigations on the survival of marine bacteriophages in raw and treated seawater

Abstract

Laboratory investigations were performed to gain insight into the mechanisms which govern the survival of marine bacteriophages in nature. Samples collected in 1988 to 1990 at station “Kabeltonne” near Helgoland were used raw, membrane-filtered (0.15μm), and/or after inverse filtration through 10 μm-mesh gauze to reduce or increase live and dead particles. The development of natural or artificial bacterial populations and the survival of 2 to 10 distinguishable strains of test phage were followed during incubation at 20°C. The results obtained with most test phages point to the predominant role of indigenous bacteria for marine phage inactivation which was generally enhanced by sample managements leading to improved growth of bacteria. The virucidal properties of the samples differed greatly in total strength as well as in the changes taking place during incubation, the latter resulting in conspicuously differing inactivation curves. Generally, phage inactivation was slow during the first 2 to 3 days of incubation, followed by a period of very rapid inactivation which usually coincided with the die-away of colony-forming bacteria. This period lasted either only a few days or until the concentration of test phage was reduced to (near) zero. While the inactivation of most test phage is assumedly caused by proteolytic enzymes released during the die-away of bacteria, the survivability of one test phage (H7/2) was also markedly influenced by the bacteria sensitive to it. Survival rates of the test phages in the laboratory tests were generally of the same order of magnitude as those recently observed with natural phage populations.

Literature Cited

  • Adams, M. H., 1959. Bacteriophages. Interscience Publ., New York, 592 pp.

    Google Scholar 

  • Ahrens, R., 1971. Untersuchungen zur Verbreitung von Phagen der Gattung Agrobacterium in der Ostsee.—Kieler Meeresforsch.27, 102–112.

    Google Scholar 

  • Akin, E. W., Hill, W. F., Cline, G. B. & Benton, W. H., 1976. The loss of poliovirus I infectivity in marine waters. — Wat. Res.10, 59–63.

    Article  Google Scholar 

  • Bergh, O., Borsheim, K. Y., Bratbak, G. & Heldal, M., 1989. High abundance of viruses found in aquatic environments. — Nature, Lond.340, 467–468.

    Article  CAS  Google Scholar 

  • Berry, S. A. & Noton, B. G., 1976. Survival of bacteriophages in seawater. — Wat. Res.10, 323–327.

    Article  Google Scholar 

  • Bitton, G. & Mitchell, R., 1974. Effects of colloids on the survival of bacteriophages in seawater. —Wat. Res.8, 227–229.

    Google Scholar 

  • Borsheim, K. Y., Bratbak, G. & Heldal, M., 1990. Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy. — Appl. environ. Microbiol.56, 352–356.

    CAS  PubMed  Google Scholar 

  • Bratbak, G., Heldal, M., Norland, S. & Thingstad, F., 1990. Viruses as partners in spring bloom microbial trophodynamics. — Appl. environ. Microbiol.56, 1400–1405.

    PubMed  Google Scholar 

  • Cliver, D. O. & Herrmann, J. E., 1972. Proteolytic and microbial inactivation of enteroviruses. — Wat. Res.6, 797–805.

    Article  CAS  Google Scholar 

  • Frank, H. & Moebus, K., 1987. An electron microscopic study of bacteriophages from marine waters. — Helgoländer Meeresunters.41, 385–414.

    Article  Google Scholar 

  • Fujioka, R. S., Loh, P. H. & Lau, L. S., 1980. Survival of human enteroviruses in the Hawaiian ocean environment: evidence for virus-inactivating microorganisms. — Appl. environ. Microbiol.39, 1105–1110.

    CAS  PubMed  Google Scholar 

  • Gundersen, K., Brandberg, A., Magnusson, S. & Lycke, E., 1967. Characterization of a marine bacterium associated with virus inactivating capacity. — Acta path. microbiol. scand.71, 281–286.

    CAS  PubMed  Google Scholar 

  • Heldal, M. & Bratbak, G., 1991. Production and decay of viruses in aquatic environments. — Mar. Ecol. Prog. Ser.72, 205–212.

    Google Scholar 

  • Herrmann, J. E. & Cliver, D. O., 1973. Degradation of Coxsackie type A9 by proteolytic enzymes. —Infect. Immun.7, 513–517.

    CAS  PubMed  Google Scholar 

  • Hidaka, T. & Ichida, K., 1972. On the undesirable effects of filtration through membrane filters on some marine bacteriophages. — Mem. Fac. Fish., Kagoshima Univ.21, 97–102.

    Google Scholar 

  • Hoyt, P. R. & Sizemore, R. K., 1982. Competitive dominance by a bacteriocin-producingVibrio harveyi strain. — Appl. environ. Microbiol.44, 653–658.

    PubMed  Google Scholar 

  • Kamei, Y., Yoshimizu, M., Ezura, Y. & Kimura, T., 1987. Screening of bacteria with antiviral activity against infectious hematopoietic necrosis virus (IHNV) from estuarine and marine environments. — Bull. Jap. Soc. scient. Fish.53, 2179–2185.

    Google Scholar 

  • Kapuscinski, R. B. & Mitchell, R., 1980. Processes controlling virus inactivation in coastal waters. —Wat. Res.14, 363–371.

    Article  CAS  Google Scholar 

  • Kapuscinski, R. B. & Mitchell, R., 1983. Sunlight-induced mortality of viruses andEscherichia coli in coastal seawater. — Environ. Sci. Technol.17, 1–6.

    Article  CAS  Google Scholar 

  • Kott, Y., 1966. Survival of T bacteriophages and coliform bacteria in sea water. — Publ. Inst. mar. Sci., Tex.11, 1–6.

    Google Scholar 

  • Kott, Y. & Ben Ari, H., 1968. Bacteriophages as marine pollution indicators. — Rev. int. Oceanogr. méd.9, 207–217.

    Google Scholar 

  • Magnusson, S., Gunderson, K., Brandberg, A. & Lycke, E., 1967. Marine bacteria and their possible relation to the virus inactivating capacity of sea water. — Acta path. microbiol. scand.71, 274–280.

    CAS  PubMed  Google Scholar 

  • Mitchell, R. & Jannasch, H. W., 1969. Processes controlling virus inactivation in seawater. — Environ. Sci. Technol.3, 941–943.

    CAS  Google Scholar 

  • Moebus, K., 1992a. Preliminary observations on the concentration of marine bacteriophages in the water around Helgoland. — Helgoländer Meeresunters.45, 411–422.

    Google Scholar 

  • Moebus, K., 1992b. Further investigations on the concentration of marine bacteriophages in the water around Helgoland, with reference to the phage-host systems encountered. — Helgoländer Meeresunters.46, 275–292.

    Google Scholar 

  • Niemi, M., 1976. Survival ofEscherichia coli phage T7 in different water types. — Wat. Res.10, 751–755.

    Article  Google Scholar 

  • Oppenheimer, C. H. & ZoBell, C. E., 1952. The growth and viability of sixty-three species of marine bacteria as influenced by hydrostatic pressure. — J. mar. Res.11, 10–18.

    Google Scholar 

  • Proctor, L. M. & Fuhrman, J. A., 1990. Viral mortality of marine bacteria and cyanobacteria. — Nature, Lond.343, 60–62.

    Article  Google Scholar 

  • Spencer, R., 1955. A marine bacteriophage. — Nature, Lond.175, 690.

    CAS  Google Scholar 

  • Spencer, R., 1960. Indigenous marine bacteriophages. — J. Bact.79, 614.

    PubMed  Google Scholar 

  • Toranzo, A. E., Barja, J. L. & Hetrick, F. M., 1982. Antiviral activity of antibiotic-producing marine bacteria. — Can. J. Microbiol.28, 231–238.

    CAS  PubMed  Google Scholar 

  • Toranzo, A. E., Barja, J. L. & Hetrick, F. M. 1983. Mechanism of poliovirus inactivation by cell-free filtrates of marine bacteria. — Can. J. Microbiol.29, 1481–1486.

    CAS  PubMed  Google Scholar 

  • Ward, R. L., Knowlton, D. R. & Winston, P. E., 1986. Mechanism of inactivation of enteric viruses in fresh water. — Appl. environ. Microbiol.52, 450–459.

    CAS  PubMed  Google Scholar 

  • Zachary, A., 1976. Physiology and ecology of bacteriophages of the marine bacteriumBeneckea natriegens: salinity. — Appl. environ. Microbiol.31, 415–422.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moebus, K. Laboratory investigations on the survival of marine bacteriophages in raw and treated seawater. Helgolander Meeresunters 46, 251–273 (1992). https://doi.org/10.1007/BF02367098

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367098

Keywords