Skip to main content
  • Published:

The effect of larval trematodes on the survival rates of two species of mud snails (hydrobiidae) experimentally exposed to desiccation, freezing and anoxia

Abstract

Digenetic trematodes are widespread among mud snails (Hydrobiidae) living in coastal lagoons and estuaries, but knowledge is generally lacking on their impact on these host organisms. We examined the survival rates of infected and non-infected experimental populations of two mud snail species,Hydrobia ventrosa (Montagu) andHydrobia neglecta Muus, exposed to desiccation, freezing and anoxia in the laboratory. Our experiments indicated that non-infected groups of both species had similar survival rates after being subjected to desiccation and anoxia, whereasH. ventrosa survived freezing better thanH. neglecta. However, infected groups ofH. neglecta specimens subjected to desiccation showed significantly lower survival rates than non-infected groups. Infected and non-infected snails of both species exposed to freezing and anoxia exhibited similar survival rates. The possible mechanisms by which parasites influence their hosts are discussed. It is unlikely that the parasites in the present case mediate the coexistence of the twoHydrobia-species, because the snail with the highest reproductive effort-H. neglecta-showed lower infection rates in situ than its congenerH. ventrosa.

Literature Cited

  • Ankel, F., 1962.Hydrobia ulvae Pennant undHydrobia ventrosa Montagu als Wirt larvaler Trematoden.—Vidensk. Meddr dansk. naturh. Foren.124, 1–100.

    Google Scholar 

  • Barnes, R. S. K., 1993. Life-history strategies in contrasting populations of the coastal gastropodHydrobia. III. Lagoonal versus intertidal marineH. neglecta.—Vie Milieu43, 73–83.

    Google Scholar 

  • Barnes, R. S. K., 1994. Investment in eggs in lagoonalHydrobia ventrosa and life-history strategies in north-west EuropeanHydrobia species.—J. mar. biol. Ass. U.K.74, 637–650.

    Google Scholar 

  • Cherrill, A. J. & James, R., 1985. The distribution and habitat preferences of four species of Hydrobiidae in East Anglia.—J. Conch.32, 123–133.

    Google Scholar 

  • Cherrill, A. J. & James, R., 1987a. Character displacement inHydrobia.—Oecologia71, 618–623.

    Article  Google Scholar 

  • Cherrill, A. J. & James, R., 1987b. Evidence for competition between mudsnails (Hydrobiidae): a field experiment.—Hydrobiologia150, 25–31.

    Article  Google Scholar 

  • Davies, T. W. & Erasmus, D. A. 1984. An ultrastructural study of the effect of parasitism by larvalSchistosoma mansoni on the calcium reserves of the host,Biomphalaria glabrata.—Cell Tissue Res.236, 643–649.

    Article  CAS  PubMed  Google Scholar 

  • Dawkins, R., 1982. The extended phenotype. The gene as the unit of selection. Freeman, Oxford, 307 pp.

    Google Scholar 

  • Day, R. W. & Quinn, G. P., 1989. Comparisons of treatments after an analysis of variance in ecology.—Ecol. Monogr.59, 433–463.

    Google Scholar 

  • Deblock, S., 1980. Inventaire des trématodes larvaires parasites des mollusquesHydrobia (Prosobranches) des côtes de France.—Parassitologia22, 1–105.

    CAS  PubMed  Google Scholar 

  • Dobson, P. & Merenlender, A., 1991. Coevolution of macroparasites and their hosts. In: Parasite-host associations—Coexistence or conflict? Ed. by C. A. Toft, A. Aeschlimann & L. Bolis. Oxford Science Publ., Oxford, 83–101.

    Google Scholar 

  • Esch, G. W. & Fernández, J. C., 1993. A functional biology of parasitism. Chapman & Hall, London, 337 pp.

    Google Scholar 

  • Fenchel, T., 1975a. Factors determining the distribution patterns of mud snails (Hydrobiidae).—Oecologia20, 1–17.

    Google Scholar 

  • Fenchel, T., 1975b. Character displacement and coexistence in mud snails (Hydrobiidae).—Oecologia20, 19–32.

    Google Scholar 

  • Fenchel, T. & Kofoed, L., 1976. Evidence for exploitative interspecific competition in mud snails (Hydrobiidae).—Oikos27, 367–376.

    Google Scholar 

  • Forbes, V. E., 1991. Response ofHydrobia ventrosa (Montagu) to environmental stress: effects of salinity fluctuations and cadmium exposure on growth.—Funct. Ecol.5, 642–648.

    Google Scholar 

  • Freeland, B., 1986. Arms races and covenants: the evolution of parasite communities. In: Community ecology. Ed. by J. Kikkawa & D. J. Anderson. Blackwell, London, 289–308.

    Google Scholar 

  • Granovitch, A. I., 1992. The effect of trematode infection on the population structure ofLittorina saxatilis (Olivi) in the White Sea. In: Proceedings of the Third International Symposium on Littorinid Biology. Ed. by J. Grahame, P. J. Mill & D. G. Reid. The Malacological Society of London, London, 255–263.

    Google Scholar 

  • Guth, D. J., Blankespoor, H. D. & Cairns, J., 1977. Potentiation of zinc stress caused by parasitic infection of snails.—Hydrobiologia55, 225–229.

    Article  CAS  Google Scholar 

  • Holmes, J. C., 1983. Evolutionary relationships between parasitic helminths and their hosts. In: Coevolution. Ed. by D. J. Futuyma & M. Slatkin. Sinauer, Sunderland, Mass., 161–185.

    Google Scholar 

  • Holmes, J. C. & Price, P. W., 1986. Communities of parasites. In: Community ecology. Ed. by J. Kikkawa & D. J. Anderson. Blackwell, London, 187–213.

    Google Scholar 

  • Hull, C. H. & Nie, N. H., 1981. SPSS update 7–9. New procedures and facilities for releases 7–9. McGraw-Hill, New York, 402 pp.

    Google Scholar 

  • Hylleberg, J., 1975. The effect of salinity and temperature on egestion in mud snails (Gastropoda: Hydrobiidae): I. A study on niche overlap.—Oecologia21, 279–289.

    Article  Google Scholar 

  • Hylleberg, J., 1986. Distribution of hydrobiid snails in relation to salinity, with emphasis on shell size and co-existence of the species.—Ophelia (Suppl.)4, 85–100.

    Google Scholar 

  • Hylleberg, J. & Siegismund, H. R., 1987. Niche overlap in mud snails (Hydrobiidae): freezing tolerance.—Mar. Biol.94, 403–407.

    Article  Google Scholar 

  • James, B. L., 1965. The effects of parasitism by larval Digenea on the digestive gland of the intertidal prosobranch,Littorina saxatilis (Olivi) subsp.tenebrosa (Montagu).—Parasitology55, 93–115.

    Google Scholar 

  • Jensen, K. T. & Siegismund, H. R., 1980. The importance of diatoms and bacteria in the diet ofHydrobia-species.—Ophelia (Suppl.)1, 193–199.

    Google Scholar 

  • Jensen, K. T. & Mouritsen, K. N., 1992. Mass mortality in two common soft-bottom invertebrates,Hydrobia ulvae andCorophium volutator—the possible role of trematodes.—Helgoländer Meeresunters.46, 329–339.

    Google Scholar 

  • Kinne, O., 1980. Diseases of marine animals: General aspects. In: Diseases of marine animals. Ed. by O. Kinne, Wiley, New York,1, 13–73.

    Google Scholar 

  • Lassen, H. H., 1979. Reproductive effort in Danish mudsnails (Hydrobiidae).—Oecologia40, 365–369.

    Article  Google Scholar 

  • Lassen, H. H. & Kristensen, J. H., 1978. Tolerance to abiotic factors in mudsnails (Hydrobiidae).—Natura jutl.20, 243–250.

    Google Scholar 

  • Lassen, H. H. & Clark, M., 1979. Comparative fecundity in three Danish mudsnails (Hydrobiidae).—Ophelia18, 171–178.

    Google Scholar 

  • Latama, G., 1992. Occurrence and impact of larval trematodes on the ecology ofHydrobia neglecta Muus andH. ventrosa (Montagu) (Gastropoda: Hydrobiidae) in estuarine environments. Thesis, Univ. of Aarhus, Aarhus, 34 pp.

    Google Scholar 

  • Lauckner, G., 1980. Diseases of Mollusca: Gastropoda. In: Diseases of marine animals. Ed. by O. Kinne. Wiley, New York,1, 311–424.

    Google Scholar 

  • Lauckner, G., 1987a. Ecological effects of larval trematode infestation on littoral marine invertebrate populations.—Int. J. Parasitol.17, 391–398.

    Google Scholar 

  • Lauckner, G., 1987b. Effects of parasites on juvenile Wadden Sea invertebrates. In: Proceedings of the 5th International Wadden Sea Symposium. Ed. by S. Tougaard & S. Asbirk. The National Forest and Nature Agency & The Museum of Fisheries and Shipping, Esbjerg, 103–121.

    Google Scholar 

  • Minchella, D. J. & Scott, M. E., 1991. Parasitism: a cryptic determinant of animal community structure.—Trends Ecol. Evolut.6, 250–254.

    Article  Google Scholar 

  • Moore, J. & Gotelli, N. J., 1990. Phylogenetic perspective on the evolution of altered host behaviours: a critical look at the manipulation hypothesis. In: Parasitism and host behaviour. Ed. by C. J. Barnard & J. M. Behnke. Taylor & Francis, London, 193–229.

    Google Scholar 

  • Mouritsen, K. N. & Jensen, K. T., 1994. The enigma of gigantism: effect of larval trematodes on growth, fecundity, egestion and locomotion inHydrobia ulvae (Pennant) (Gastropoda: Prosobranchia).—J. exp. mar. Biol. Ecol.181, 53–66.

    Article  Google Scholar 

  • Muus, B., 1967. The fauna of Danish estuaries and lagoons. Distributions and ecology of dominating species in the shallow reaches of the mesohaline zone.—Meddr Danm. Fisk.-og Havunders.5, 1–316.

    Google Scholar 

  • Newell, R. C., 1970. Biology of intertidal animals. Elek, London, 555 pp.

    Google Scholar 

  • Price, P. W., Westoby, M., Rice, B., Atsatt, P. R., Firtz, R. S., Thompson, J. N. & Mobley, K., 1986. Parasite mediation in ecological interactions.—A. Rev. Ecol. Syst.17, 487–505.

    Google Scholar 

  • Schall, J. J., 1992. Parasite-mediated competition inAnolis lizards.—Oecologia92, 58–64.

    Article  Google Scholar 

  • Sousa, W. P., 1991. Can models of soft-sediment community structure be complete without parasites?—Am. Zool.31, 821–830.

    Google Scholar 

  • Sousa, W. P. & Gleason, M., 1989. Does parasitic infection compromise host survival under extreme environmental conditions? The case forCerithidea californica (Gastropoda: Prosobranchia).—Oecologia80, 456–464.

    Article  Google Scholar 

  • Tallmark, B. & Norrgren, G., 1976. The influence of parasitic trematodes on the ecology ofNassarius reticulatus (L.) in Gullmar Fjord (Sweden).—Zoon4, 149–154.

    Google Scholar 

  • Thompson, S. N.. 1990. Physiological alterations during parasitism and their effects on host behaviour. In: Parasitism and host behaviour. Ed. by C. J. Barnard & J. M. Behnke. Taylor & Francis, London, 64–94.

    Google Scholar 

  • Toft, C. A., Aeschlimann, A. & Bolis, L., 1991. Introduction: coexistence or conflict. In: Parasite-host associations—Coexistence or conflict? Ed. by C. A. Toft, A. Aeschlimann & L. Bolis. Oxford Science Publ, Oxford, 1–12.

    Google Scholar 

  • Underwood, A. J., 1981. Techniques of analysis of variance in experimental marine biology and ecology.—Oceanogr. mar. Biol.19, 513–605.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, K.T., Latama, G. & Mouritsen, K.N. The effect of larval trematodes on the survival rates of two species of mud snails (hydrobiidae) experimentally exposed to desiccation, freezing and anoxia. Helgolander Meeresunters 50, 327–335 (1996). https://doi.org/10.1007/BF02367107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367107

Keywords