Skip to main content
  • Published:

The influence of the slowing of Earth's rotation: A hypothesis to explain cell division synchrony under different day duration in earlier and later evolved unicellular algae

Abstract

Every year the Earth's rotation period is reduced, mainly due to the tidal drag of the moon. The length of day increases continuously by about 1 h every 200 million years. The period of rotation around the Sun remains constant; hence, the length of the year remains constant, so years acquire progressively fewer days. Many unicellular algae show rhythmicity in their cell division cycle. If primitive algae evolved under a shorter day duration, then it is possible that the early-evolved algae had to synchronize their cell division cycle to shorter lengths of day than did later-evolved algae. We tested this hypothesis by growing Cyanobacteria, Dinophyceae, Prasinophyceae, Bacillariophyceae and Conjugatophyceae (evolutionary appearance probably in this order) at 88 h light-dark cycles (LD), 1010 LD, and 1212 LD, at 20 or 27°C. Cyanobacteria synchronized their cell division cycles optimally at 88 h LD, Dinophyceae and Prasinophyceae at 1010 h LD, and Conjugatophyceae and Bacillariophyceae at 1212 h LD. The synchrony of cell division was scarcely affected by temperature. Results suggested that the early evolved unicellular autotrophic organisms such as the Cyanobacteria synchronized their cell division cycle under a shorter day duration than later-evolved unicellular algae, and these traits may have been conserved by quiescent genes up to the present day.

Literature Cited

  • Aguilera, A., 1991. Influencia de la tasa de desaceleración terrestre sobre la duración del ciclo celular en microalgas. Dis., Univ. Autonoma Madrid, 40 pp.

  • Alvarez, M., Velasco, J., Rubio, A. & Brook, A., 1988. Phased cell division by a field population ofStaurastrum longiradiatum (Conjugatophyceae, Desmidiaceae). — Arch. Hydrobiol.112, 1–20.

    Google Scholar 

  • Alvarez, M. & Gallardo, T., 1989. Una revisión sobre la biotecnología de las algas. — Bot. Complutensis15, 9–60.

    Google Scholar 

  • Balzer, I. & Hardeland, R., 1988. Influence of temperature on biological rhythms. — Int. J. Biometeorol.32, 231–241.

    Article  Google Scholar 

  • Baroin, A., Perasso, R., Qu, L. H., Brugerolle, G., Bachellerie, J. P. & Adoutte, A., 1988. Partial phylogeny of unicellular eukaryotes based on rapid sequencing of a portion of 28S ribosomal RNA. — Proc. natn. Acad. Sci. U.S.A.85, 3474–3478.

    CAS  Google Scholar 

  • Brand, L. E., 1982. Persistent diel rhythms in the chlorophyll fluorescence of marine phytoplankton species. — Mar. Biol.69, 253–262.

    Article  Google Scholar 

  • Bott, M. H. P., 1982. The interior of the Earth: its structure, constitution and evolution. Arnold, London, 403 pp.

    Google Scholar 

  • Bünning, E., 1973. The physiological clock. Springer, Berlin, 258 pp.

    Google Scholar 

  • Bünning, E., 1986. Evolution der circadianen Rhythmik und ihrer Nutzung zur Tageslängenmessung. — Naturwissenschaften73, 70–77.

    Article  Google Scholar 

  • Chisholm, S. W. & Brand, L. E., 1981. Persistence of cell division phasing in marine phytoplankton in continuous light after entrainment to light-dark cycles. — J. exp. mar. Biol. Ecol.41, 107–118.

    Google Scholar 

  • Costas, E. & López-Rodas, V., 1990. Persistencia de la sincronía de la división celular enProrocentrum triestinum Schiller (Dinophyceae). — Scientia mar.54, 263–267.

    Google Scholar 

  • Costas, E. & López-Rodas, V., 1991a. Persistence of cell division synchrony inSpirogyra insignis (Gamophyceae): membrane proteoglycans transmitting synchronizing information through generations. — Chronobiol. int.8, 85–92.

    CAS  PubMed  Google Scholar 

  • Costas, E. & López-Rodas, V., 1991b. Evidence for an annual rhythm in cell ageing inSpirogyra insignis (Chlorophyceae). — Phycologia30, 597–599.

    Google Scholar 

  • Costas, E. & López-Rodas, V., 1991c. On growth factors, cell division cycle and the eukaryotic origin. — Endocytobiosis Cell Res.8, 89–92.

    Google Scholar 

  • Costas, E., González-Gil, S., Aguilera, A. & López-Rodas, V., 1992. A morphometrical analysis of ultrastructural changes during the cell cycle ofProrocentrum triestinum using stereology. —Botanica mar.35, 429–436.

    Google Scholar 

  • Dodge, J. D., 1983. Dinoflagellates: investigation and phylogenetic speculation. — Br. phycol. J.18, 335–356.

    Google Scholar 

  • Edmunds, L. N., 1965. Studies on synchronously dividing cultures ofEuglena gracilis Klebs (strain Z). I. Attainment and characterization of rhythmic cell division. — J. cell. comp. Physiol.66, 147–158.

    Google Scholar 

  • Edmunds, L. N., 1984. Physiology of circadian rhythms in microorganisms. In: Advances in microbiol physiology. Ed. by A. H. Rose & D. W. Tempest. Acad. Press, New York, 432 pp.

    Google Scholar 

  • Edmunds, L. N., 1988. Cellular and molecular basis of biological clocks. Springer, New York, 497 pp.

    Google Scholar 

  • Edmunds, L. N. & Funch, R. R. 1969. Circadian rhythm of cell division inEuglena: effects of a random illumination regimen. — Science, N.Y.165, 500–503.

    Google Scholar 

  • Edmunds, L. N., Jay, M. E., Kohlmann, A., Liu, S. C., Merriam, V. H. & Sternberg, H., 1976. The coupling effects of some thiol and other sulfur-containing compounds of the circadian rhythms of cell division in photosynthetic mutants ofEuglena. — Arch. Microbiol.108, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Edmunds, L. N., Tay, D. E. & Laval-Martin, D. L., 1982. Cell division cycles and circadian clocks. —Pl. Physiol., Lancaster70, 297–302.

    Google Scholar 

  • Foster, R. J., 1991. Historical geology. MacMillan, New York, 374 pp.

    Google Scholar 

  • Grobelaar, N., Huang, T. C., Lin, H. Y & Chow, T. J., 1986. Dinitrogenfixing endogenous rhythm inSynechococcus RF-1. — FEMS microbiol. Lett.37 173–178.

    Google Scholar 

  • Guillard, R., 1975. Culture of phytoplankton for feeding marine invertebrates. In: Culture of marine invertebrate animals. Ed. by W. Smith & M. Chanley. Plenum, New York, 26–60.

    Google Scholar 

  • Gunderson, J. H., Elwood, H., Ingold, A., Kindle, K. & Sogin, M., 1987. Phylogenetic relationships between chlorophytes, crysophytes and oomycetes. — Proc. natn. Acad. Sci. U.S.A.84, 5823–5827.

    CAS  Google Scholar 

  • Herzog, M., Boletzky, S. & Soyer, M. O, 1984. Ultrastructural and biochemical nuclear aspects of eukaryote classification: independent evolution of the dinoflagellates as a sister group of the actual eukaryotes? — Origins Life13, 205–215.

    Article  CAS  Google Scholar 

  • Hoek, C. van den, Jahn, H. M. & Mann, D. G., 1993. Algen. Thieme, Stuttgart, 411 pp.

    Google Scholar 

  • Homma, K. & Hastings, W., 1989a. The S phase is discrete and is controlled by the circadian clock in the marine dinoflagellateGonyaulax polyedra. — Exp. Cell Res.182, 635–644.

    Article  CAS  PubMed  Google Scholar 

  • Homma, K. & Hastings, W., 1989b. Cell growth kinetics, division asymmetry and volume control at division in the marine dinoflagellateGonyaulax polyedra: a model of circadian clock control of the cell cycle. — J. Cell Sci.92, 303–318.

    PubMed  Google Scholar 

  • Homma, K., Haas, E. & Hastings, W., 1990. Phase of the circadian clock is accurately transferred from mother to daughter cells in the dinoflagellateGonyaulax polyedra. — Cell Biophys.16, 85–97.

    CAS  PubMed  Google Scholar 

  • Klevecz, R. R., 1984. Cellular oscillators as vestiges of a primitive circadian clock. In: Cell cycle clocks. Ed. by L. N. Edmunds. Dekker, New York, 47–61.

    Google Scholar 

  • Klevecz, R. R., Kauffman, S. A. & Shymko, R. M., 1984. Cellular clocks and oscillators. — Int. Rev. Cytol.86, 97–128.

    CAS  PubMed  Google Scholar 

  • Knoll, A. H., 1992. The early evolution of eukaryotes: a geological perspective. — Science, N.Y.256, 622–627.

    CAS  Google Scholar 

  • Kollar, E. J. & Fisher, C., 1980. Tooth induction in chicken epithelium: expression of quiescent genes for enamel synthesis. — Science, N.Y.207, 993–995.

    CAS  Google Scholar 

  • Lee, R. E., 1989. Phycology. Cambridge Univ. Press, Cambridge, 645 pp.

    Google Scholar 

  • Lenaers, G., Maroteaux, L., Michot, B. & Herzog, M., 1989. Dinoflagellates in evolution. A molecular phylogenetic analysis of large subunit ribosomal RNA. — J. mol. Evol.29, 40–51.

    Article  CAS  PubMed  Google Scholar 

  • López-Rodas, V., Gonzalez de Chavarri, E., González-Gil, S. & Costas, E., 1992. 24-hours-less light-dark cycles and growth factors increasing the growth rate ofTetraselmis sp. — Korean J. Phycol.7, 167–171.

    Google Scholar 

  • Lüning, K., 1991. Circannual growth rhythm in a brown alga,Pterygophyra californica. — Bot. Acta104, 157–162.

    Google Scholar 

  • Lüning, K., 1993. Environmental and internal control of seasonal growth in seaweeds. — Hydrobiologia260/261, 1–14.

    Article  Google Scholar 

  • Lüning, K., 1994. Circadian growth rhythm in juvenile sporophytes of Laminariales (Phaeophyta). —J. Phycol.30, 190–199.

    Google Scholar 

  • Margulis, L. & Schwartz, K. V., 1982. Five kingdoms. An illustrated guide to the Phyla of life on Earth. Freeman, New York, 208 pp.

    Google Scholar 

  • Mitsui, A., Kumazawa, S., Takahashi, A., Ikemoto, H., Cao, S. & Ari, T., 1986. Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. — Nature, Lond.323, 720–722.

    Article  CAS  Google Scholar 

  • Mitsui, A., Cao, S., Takahashi, A. & Ari, T., 1987. Growth synchrony and cellular parameters of unicellular nitrogen-fixing marine cyanobacteriumSynechococcus spp. strain Miami BG 043511 under continuous illumination. — Physiol. plant.69, 1–8.

    CAS  Google Scholar 

  • Mohr, R. E., 1975. Growth rhythm and the history of the Earth rotation. Wiley, London, 265 pp.

    Google Scholar 

  • Muller, P. M. & Stephenson, F. R., 1975. The accelerations of the Earth and Moon from early astronomical observations. In: Growth rhythms and the history of the Earth's rotation. Ed. by G. D. Rosenberg & S. K. Runcorn. Wiley, London, 352–375.

    Google Scholar 

  • Nelson, D. M. & Brand, L. E., 1979. Cell division periodicity in 13 species of marine phytoplankton on a light-dark cycle. — J. Phycol.15, 67–75.

    Article  Google Scholar 

  • Ostgaard, K. & Jensen, A., 1982. Diurnal and circadian rhythms in the turbidity of growingSkeletonema costatum cultures. — Mar. Biol.66, 261–268.

    Google Scholar 

  • Panella, G., 1972. Paleontological evidence on the Earth's rotation history since early Precambrian. —Astrophys. Space Sci.16, 212–237.

    Google Scholar 

  • Pirson, A., 1957. Induced periodicity of photosynthesis and respiration inHydrodyction. In: Research in photosynthesis. Ed. by H. Gaffron. Interscience, New York, 440–449.

    Google Scholar 

  • Pittendrigh, C. S., 1965. On the mechanism of the entrainment of a circadian clock by light cycles. In: Circadian clocks. Ed. by J. Aschoff. North-Holland, Amsterdam, 227–297.

    Google Scholar 

  • Pittendrigh, C. S., 1966. Biological clocks. In: Science and the sixties. Ed. by D. L. Arm. Univ. of New Mexico, Albuquerque, 96–111.

    Google Scholar 

  • Sokal, R. R. & Rohlf, F. J., 1981. Biometry. Freeman, San Francisco, 859 pp.

    Google Scholar 

  • Sweeney, B. M., 1987. Rhythmic phenomena in plants. Acad. Press, San Diego, 172 pp.

    Google Scholar 

  • Sweeney, B. M. & Hastings, J. W., 1958. Rhythmic cell division in populations ofGonyaulax polyedra. — J. Protozool.5, 217–224.

    Google Scholar 

  • Wells, J. W., 1963. Coral growth and geochronometry. — Nature, Lond.197, 948–950.

    Google Scholar 

  • Williams, M., 1977. Stereological techniques. In: Practical methods in electron microscopy. Ed. by A. M. Glanert. Elsevier, Amsterdam,1, 216 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costas, E., González-Gil, S., López-Rodas, V. et al. The influence of the slowing of Earth's rotation: A hypothesis to explain cell division synchrony under different day duration in earlier and later evolved unicellular algae. Helgolander Meeresunters 50, 117–130 (1996). https://doi.org/10.1007/BF02367140

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367140

Keywords