Skip to main content
  • Published:

The analysis of small-and mesoscale dispersion patterns ofMarenzelleria viridis (Polychaeta: Spionidae) in a coastal water area of the southern Baltic

Abstract

The horizontal mesoscale distribution ofMarenzelleria viridis (Verrill, 1873), a spionid polychaete introduced from North American coastal waters during the 1980s, was studied in shallow water in the southern Baltic (German coast). The polychaete achieved an individual dominance of 80% and abundances up to around 8500 ind./m2. Samples taken from a small (1.2 m×1.2 m, 6×6 samples, depth 0–35 cm) and a large station grid (5.5 m×5.5 m, 11×11 samples, depth 0–35 cm) were used to calculate dispersion indices for subpopulations of adult and juvenileM. viridis and subdominant chironimids (theChironomus plumosus andCh. halophilus complexes). The distribution patterns were significantly patchy. The patch sizes were estimated with the help of the dispersion indices and by analysing the correlograms in which spatial autocorrelations such as Moran's I and Geary's c values were plotted versus the field distance k. The patch sizes were heterogenous. The smallest patches found were 0.04 m2. The largest sizes observed were 9 m2. It is conceivable that smaller patches merge to form larger aggregations. Calculation of the abundance and rank correlations between subpopulations revealed significant positive relationships. These indicate principal suspension feeding. Sediment structure, substrate preference, feeding mode and biotic or abiotic attraction centres are considered to be the main causes of aggregation and the positive correlations.

Literature Cited

  • Alava, A. de & Defoe, O., 1991. Distributional pattern and population dynamics ofExcirolana armata (Isopoda: Cirolanidae) in a Uruguayan sandy beach. Estuar. coast. Shelf Sci.33, 433–444.

    Google Scholar 

  • Aller, R. C., 1980. Relationships of tube-dwelling benthos with sediment and overlying water chemistry. In: Marine benthic dynamics. Ed. by K. R. Tenore & B. C. Coull. Univ. of South Carolina Press, Columbia, South Carolina, 285–308.

    Google Scholar 

  • Anderson, D. J. & Kendziorek, M., 1982. Spacing patterns in terebellid polychaetes.—J. exp. mar. Biol. Ecol.58, 193–205.

    Article  Google Scholar 

  • Angel, H. H. & Angel, M. V., 1967. Distribution pattern analysis in a marine benthic community. —Helgoländer wiss? Meeresunters.15, 445–454.

    Google Scholar 

  • Atkins, S. M., Jones, A. M. & Garwood, P. R. 1987. The ecology and reproductive cycle of a population ofMarenzelleria viridis (Annelida: Polychaeta: Spionidae) in the Tay Estuary.—Proc. R. Soc. Edinb.92B, 311–322.

    Google Scholar 

  • Breese, W. P. & Phibbs, F. D., 1972. Ingestion of bivalve molluscan larvae by the polychaete annelidPolydora ligni.—Veliger14, 274.

    Google Scholar 

  • Brey, T., 1989. Der Einfluß physikalischer und biologischer Faktoren auf Struktur und Dynamik der sublitoralen Macoma-Gemeinschaft der Kieler Bucht.—Ber. Inst. Meeresk. Kiel186, 1–248.

    Google Scholar 

  • Burla, H., Schenker, H.-J. & Stahel, W., 1974. Das Dispersionsmuster von Teichmuscheln (Anodonta) in Zürichsee.—Oecologia17, 131–140.

    Article  Google Scholar 

  • Butman, C. A., 1987. Larval settlement of soft-sediment invertebrates: The spatial scales of pattern explained by active habitat selection and the emerging role of hydrodynamical processes.—Oceanogr. mar. Biol.25, 113–165.

    Google Scholar 

  • Clark, P. J. & Evans, F. C., 1954. Distance to nearest neighbor as a measure for spatial relationships in populations.—Ecology35, 445–453.

    Google Scholar 

  • Cliff, A. D. & Ord, J. K., 1973 Spatial autocorrelation. Pion, London, 180pp.

    Google Scholar 

  • Cliff, A. D. & Ord, J. K., 1981. Spatial processes. Pion, London 266pp.

    Google Scholar 

  • Correns, M., 1976. Charakteristische morphometrische Daten der Boddenkette südlich des Darß und des Zingst.—Vermessungstechnik24, 459–461.

    Google Scholar 

  • Dankers, N. & Beukema, J. J., 1981. Distributional patterns of macrobenthic species in relation to some environmental factors.—Rep. Wadden Sea Working Group4, 69–103.

    Google Scholar 

  • Daro, M. H. & Polk, P., 1973. The autecology ofPolydora ciliata along the Belgian coast.—Neth. J. Sea Res. 6, 130–140.

    Google Scholar 

  • Dauer, D. M., Maybury, C. A. & Ewing, R. M., 1981. Feeding behaviour and general ecology of several spionid polychaetes from the Chesapeake Bay.—J. exp. mar. Biol. Ecol.54, 21–38.

    Article  Google Scholar 

  • Eckman, J. E., 1979. Small-scale patterns and processes in a soft-substratum, intertidal community.—J. mar. Res.37, 437–457.

    Google Scholar 

  • Eckman, J. E., Nowell, A. R. M. & Jumars, P. A., 1981. Sediment destabilization by animal tubes.—J. mar. Res.39, 361–374.

    Google Scholar 

  • Essink, K. & Kleef, H. L., 1993. Distribution and life cycle of the North American spionid polychaeteMarenzelleria viridis (Verrill, 1873) in the Ems Estuary.—Neth. J. aquat. Ecol.27, 237–246.

    Google Scholar 

  • Fager, E. W., 1964. Marine sediments: Effects of a tube-building polychaete.—Science, N. Y.,143, 356–359.

    Google Scholar 

  • Gage, J. D. & Coghill, G. G., 1977. Studies on the dispersion patterns of Scottish sea loch benthos from contiguous core transects. In: Ecology of marine benthos. Ed. by B. C. Coull, Univ. of South Carolina Press, Columbia, South Carolina, 319–337.

    Google Scholar 

  • Gallagher, E. D., Jumars, P. & Trueblood, D. D., 1983. Facilitation of soft-bottom benthic succession by tube builders.—Ecology64, 1200–1216.

    Google Scholar 

  • Iwao, S., 1972. Application of the m-m method to the analysis of spatial patterns by changing the quadrat size.—Res. Populat. Ecol.14, 97–128.

    Google Scholar 

  • Johnson, R. K., 1987. Seasonal variation in diet ofChironomus plumosus (L.) andC. anthracinus Zett. (Diptera: Chironomidae) in mesotrophic Lake Erken.—Freshwat. Biol.17, 525–532.

    Google Scholar 

  • Jumars, P. A., 1975. Methods for measurement of community structure in deep-sea macrobenthos.—Mar. Biol.30, 245–252.

    Google Scholar 

  • Jumars, P. A., Thistle, D. & Jones, M. L., 1977. Detecting two dimensional spatial structure in biological data.—Oecologia28, 109–123.

    Article  Google Scholar 

  • Jumars, P. A. & Eckman, J. E. 1983. Spatial structure within deep-sea benthic communities. In: The sea. Ed. by G. T. Rowe, Wiley, New York,8, 399–451.

    Google Scholar 

  • Kajak, Z., 1987. Determinants of maximum biomass of benthic Chironomidae (Diptera).—Entomol. scand. (Suppl.)29, 303–308.

    Google Scholar 

  • Kern, J. C. & Bell, S. S., 1984. Spatial heterogeneity in size-structure of meiofaunal-sized invertebrates on small-spatial scales (meters) and its implications.—J. exp. mar. Biol. Ecol.78, 221–235.

    Article  Google Scholar 

  • Kinner, P., Maurer, D. & Leathem, W., 1974. Benthic invertebrates in Delaware Bay: animalsediment association of the dominant species.—Int. Revue ges. Hydrobiol.59, 685–701.

    Google Scholar 

  • Levin, L. A., 1981. Dispersion, feeding behaviour and competition in two spionid polychaetes.—J. mar. Res.39, 99–117.

    Google Scholar 

  • Levin, L. A., 1982. Interference interactions among tube-dwelling polychaetes in a dense infaunal assemblage.—J. exp. mar. Biol. Ecol.65, 107–119.

    Article  Google Scholar 

  • Levin, L. A., 1984. Life history and dispersal patterns in a dense infaunal polychaete assemblage: Community structure and response to disturbance.—Ecology65, 1185–1200.

    Google Scholar 

  • Lloyd, M., 1967. Mean crowding.—J. Anim. Ecol.36, 1–30.

    Google Scholar 

  • Maurer, D. & Aprill, G., 1979. Intertidal benthic invertebrates and sediment stability at the mouth of Delaware Bay.—Int. Revue ges. Hydrobiol.64, 379–403.

    Google Scholar 

  • McGurk, M. D., 1987. Natural mortality and spatial patchiness: reply to Gulland.—Mar. Ecol. Prog. Ser.39, 201–206.

    Google Scholar 

  • Meadows, P. S. & Campbell, J. I., 1972. habitat selection by aquatic invertebrates.—Adv. mar. Biol.10, 271–382.

    Google Scholar 

  • Morisita, M., 1959. Measuring of the dispersion of individuals and analysis of the distributional patterns.—Mem. Fac. Sci. Kyushu Univ. (Ser. E: Biol.)2, 215–235.

    Google Scholar 

  • Norkko, A., Bonsdorff, E. & Boström, C., 1993. Observations of the polychaeteMarenzelleria viridis (Verrill) on a shallow sandy bottom on the south coast of Finland.—Mem. Soc. Fauna Flora fenn.69, 112–113.

    Google Scholar 

  • Patil, G. P. & Stiteler, W. M., 1974. Concepts of aggregation and their quantification: A critical review with some new results and applications.—Res. Populat. Ecol.15, 238–254.

    Google Scholar 

  • Perrson, L.-E., 1994. Nya arter ändrar Ostersjön mer än vara föroreningar.—Fauna Flora5, 33–37.

    Google Scholar 

  • Pielou, E. C., 1969. An introduction to mathematical ecology. Wiley-Interscience, New York, 286pp.

    Google Scholar 

  • Pielou, E. C., 1977. Mathematical ecology. Wiley, New York; 385pp.

    Google Scholar 

  • Polzin, W.-P., 1988. Experimentell-ökologische Untersuchungen an Chironomiden-Larven unter Berücksichtigung der Nahrungsaufnahme und-verwertung. Dipl.-Arb. Univ. Rostock, 55pp.

  • Poole, R. W., 1974. An introduction to quantitative ecology. McGraw-Hill, New York, 532 pp.

    Google Scholar 

  • Reise, K. 1979. Spatial configurations generated by motile benthic polychaetes.—Helgoländer wiss. Meeresunters.32, 55–72.

    Google Scholar 

  • Reise, K., 1987. Spatial niches and long-term performance in meiobenthic Plathelminthes of an intertidal lugworm flat.—Mar. Ecol. Prog. Ser.38, 1–11.

    Google Scholar 

  • Reise, K., 1991. Mosaic cycle in the marine benthos. In: The mosaic-cycle concept of ecosystems. Ed. by H. Remmert. Springer, Berlin, 61–82.

    Google Scholar 

  • Bhoads, D. C., Yingst, J. Y. & Ullman, W. J., 1978. Seafloor stability in central Long Island Sound: Part I. Temporal changes in erodibility of fine-grained sediment. In: Estuarine interactions. Ed. by M. L. Wiley. Acad. Press, New York, 221–244.

    Google Scholar 

  • Roe, P., 1975. Aspects of the life history and of territorial behavior in young individuals ofPlatynereis bicaniculata andNereis vexillosa (Annelida, Polychaeta).—Pacif. Sci.29, 341–348.

    Google Scholar 

  • Sanders, H. L., Goudsmit, E. M., Mills, E. L. & Hampson, G. e., 1962. A study of the intertidal fauna of Barnstable Harbor, Massachusetts.—Limnol. Oceanogr.7, 63–79.

    Google Scholar 

  • Sarda, R., Forman, K. & Valiela, I., 1995. Macrofauna of a southern New England salt marsh: seasonal dynamics and production.—Mar. Biol.121, 431–445.

    Google Scholar 

  • Sastre, M. P., 1985. Aggregated patterns of dispersion inDonax denticulatus.—Bull. mar. Sci.36, 220–224.

    Google Scholar 

  • Sokal, R. R., 1979. Ecological parameters inferred from spatial correlograms. In: Contemporary quantitative ecology and related parameters. Ed. by G. P. Patil & M. Rosenzweig, Int. Co-op. Publ. House, Fairland, 695pp.

    Google Scholar 

  • Sokal, R. R. & Rohlf, F. J., 1981. Biometry. Freeman, San Francisco, 859pp.

    Google Scholar 

  • Sun, B. & Fleeger, J. W., 1991. Spatial and temporal patterns of dispersion in meiobenthic copepods.—Mar. Ecol. Prog. Ser.71, 1–11.

    Google Scholar 

  • Tamaki, A., 1985. Inhibition of larval recruitment ofArmandia sp. (Polychaeta: Opheliidae) by established adults ofPseudopolydora paucibranchiata (Okuda) (Polychaeta: Spionidae) on an intertidal sand flat.—J. exp. mar. Biol. Ecol.87, 67–82.

    Article  Google Scholar 

  • Titmus, G. & Badcock, R. M. 1981. Distribution and feeding of larval Chironomidae in a gravel pit lake.—Freshwat. Biol.11, 263–271.

    Google Scholar 

  • Trueblood, D. D., 1991. Spatial and temporal effects of terebellid polychaete tubes on soft-bottom community structure in Phosphorescent Bay, Puerto Rico.—J. exp. mar. Biol. Ecol.149, 139–159.

    Article  Google Scholar 

  • Verrill, A. E., 1873. Report upon the invertebrate animals of Vineyard Sound and the adjacent waters, with an account of the physical characters of the region.—U.S. Rep. Commnr Fish.,1873 (P. 1), 295–778.

    Google Scholar 

  • Woodin, S. A., 1982. Browsing: important in marine sedimentary environments? Spionid polychaete examples.—J. exp. mar. Biol. Ecol.60, 35–45.

    Article  Google Scholar 

  • Yingst, J. Y. & Rhoads, D. C., 1978. Seafloor stability in central Long Island Sound: Part II. Biological interactions and their potential importance for seafloor erodibility. In: Estuarine interactions. Ed. by M. L. Wiley. Acad. Press, New York, 245–260.

    Google Scholar 

  • Zettler, M. L., 1993. Untersuchungen zur Biologie und Ökologie vonMarenzelleria viridis (Polychaeta: Spionidae) in der Darß-Zingster-Boddenkette. Dipl.-Arb. Univ. Rostock, 80pp.

  • Zettler, M. L., Bochert, R. & Bick, A., 1994. Rohrenbau und Vertikalverteilung vonMarenzelleria viridis (Polychaeta: Spionidae) in einem inneren Küstengewässer der südlichen Ostsee.—Rostocker meeresbiol. Beitr.2, 215–225.

    Google Scholar 

  • Zettler, M. L., Bick, A. & Bochert, R., 1995. Distribution and population dynamics ofMarenzelleria viridis (Polychaeta: Spionidae) in a coastal water of the southern Baltic—Arch. Fish. mar. Res.42, 209–224.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zettler, M.L., Bick, A. The analysis of small-and mesoscale dispersion patterns ofMarenzelleria viridis (Polychaeta: Spionidae) in a coastal water area of the southern Baltic. Helgolander Meeresunters 50, 265–286 (1996). https://doi.org/10.1007/BF02367156

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367156

Keywords