Skip to main content
  • Published:

A perforated gastrovascular cavity in the symbiotic deep-water coralLeptoseris fragilis: A new strategy to optimize heterotrophic nutrition

Abstract

The organization of the zooxanthellate scleractinian coralLeptoseris fragilis was studied. The architecture of the corallite and the histology of the polyparium were analysed for adaptations that enable efficient capture and retention of suspended particles which would increase energy supply. The data indicate that the gastrovascular system ofL. fragilis is not a blind but a flowthrough system. Water entering the coelenteron through the mouth leaves the body not only through the mouth but also through microscopic pores ( 1–2 μm) which are located near the crests of the sclerosepta in the oral epithelia. Irrigation is achieved by flagellar and probably also by muscular activity. This type of filtration enablesL. fragilis, which lacks tentacles, to utilize suspended organic material including bacteria. The supposed suspension feeding in combination with effective photoadaptations (presented in former communications) seems to be the basis for the survival ofL. fragilis in an extreme habitat (between-95 and-145 m) and for its, successful competion with other scleractinian species provided with larger catching surfaces, and with other invertebrates depending on filter feeding.

Literature Cited

  • Abe, N., 1938. Feeding behaviour and the nematocyst ofFungia and 15 other species of corals. —Palao trop. biol. Stn Stud.1 (3), 469–522.

    Google Scholar 

  • Chevalier, J. P., 1987. Ordre des Scléractiniaires. In: Traité de zoologie. Ed. by P. P. Grassé. Masson, Paris, 498–539.

    Google Scholar 

  • Fricke, H. W. & Schuhmacher, H., 1983. The depth limits of Red Sea stony corals: an ecophysiological problem (a deep diving survey by submersible). — Mar. Ecol. Prog. Ser.4, 163–194.

    Google Scholar 

  • Fricke, H. W., Vareschi, E. & Schlichter, D., 1987. Photoecology of the coralLeptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible). — Oecologia73, 271–381.

    Article  Google Scholar 

  • Fricke, H. W., Kaiser, P. & Schlichter, D., 1992. Auto-heterotrophy inLeptoseris fragilis at the extreme limits of coral-algal photosynthesis. — Mar. Biol. (In press).

  • Gladfelter, E. H., 1983. Circulation of fluids in the gastrovascular system of the reef coralAcropora cervicornis. — Biol. Bull. mar. biol. Lab., Woods Hole165, 619–636.

    Google Scholar 

  • Hoeksema, B. W., 1989. Taxonomy, phylogeny and biogeography of mushroom corals (Scleractinia: Fungiidae). — Zool. Verh., Leiden254, 1–295.

    Google Scholar 

  • Johannes, R. E., Coles, S. L. & Kuenzel, N. T., 1970. The role of zooplankton in the nutrition of some scleractinian corals. — Limnol. Oceanogr.15, 579–586.

    Google Scholar 

  • Le Tissier, M. D. A. A., 1990. The ultrastructure of the skeleton and skeletogenic tissues of the temperate coralCaryophyllia smithii. — J. mar. biol. Ass. U.K.70, 295–310.

    Google Scholar 

  • Lewis, J. B., 1976. Experimental tests of suspension feeding in Atlantic Reef Corals. — Mar. Biol.36, 147–150.

    Article  Google Scholar 

  • Lewis, J. B., 1977. Processes of organic production on coral reefs. — Biol. Rev.52, 305–347.

    CAS  Google Scholar 

  • Linley, E. A. S. & Koop, K., 1986. Sigmficance of pelagic bacteria as a trophic resource in a coral reef lagoon, One Tree Island, Great Barrier Reef. — Mar. Biol.92, 457–464.

    Article  Google Scholar 

  • Marshall, N., Durbin, A. G., Gerber, R. & Telek, G., 1975. Observations on particulate and dissolved organic matter in coral reef areas. — Int. Revue ges. Hydrobiol.60, 335–345.

    Google Scholar 

  • Mitskevich, I. N. & Kriss, A. E., 1982. Distribution of the number, biomass and production of microorganisms in the world ocean. — Int. Revue ges. Hydrobiol.67, 433–458.

    Google Scholar 

  • Moriarty, D. J. W., Pollard, P. C. & Hunt, W. G., 1985. Temporal and spatial variation in bacterial production in the water column over a coral reef. — Mar. Biol.85, 285–292.

    Google Scholar 

  • Patton, J. S., Abraham, S. & Benson, A. A., 1977. Lipogenesis in the intact coralPocillopora capitata and its isolated zooxanthellae: evidence for a light-driven carbon cycle between symbiont and host. — Mar. Biol.44, 235–247.

    Article  CAS  Google Scholar 

  • Pilkington, J. B., 1969. The organization of skeletal tissues in the spines ofEchinus esculentus. —J. mar. biol. Ass. U.K.49, 857–877.

    CAS  Google Scholar 

  • Rubenstein, D. I. & Koehl, M. A. R., 1977. The mechanisms of filter feeding: some theoretical considerations. — Am. Nat.111, 981–994.

    Article  Google Scholar 

  • Schlichter, D. & Kremer, B. P., 1985. Metabolic competence of endocytobiotic dinoflagellates (zooxanthellae) in the soft coral,Heteroxenia fuscescens. — Endocyt. Cell Res.2, 71–82.

    Google Scholar 

  • Schlichter, D., Weber, W. & Fricke, H. W., 1985. A chromatophore system in the hermatypic, deepwater coralLeptoseris fragilis (Anthozoa: Hexacorallia). — Mar. Biol.89, 143–147.

    Article  Google Scholar 

  • Schlichter, D., Fricke, H. W. & Weber, W., 1986. Light harvesting by wavelength transformation in a symbiotic coral of the Red Sea twilight zone. — Mar. Biol.91, 403–407.

    Article  Google Scholar 

  • Schlichter, D., Fricke, H. W. & Weber, W., 1988. Evidence for PAR-enhancement by reflection, scattering, and fluorescence in the symbiotic deep water coralLeptoseris fragilis (PAR=Photosynthetically Active Radiation). — Endocyt. Cell Res.5, 83–94.

    Google Scholar 

  • Schlichter, D. & Fricke, H. W., 1990. Coral host improves photosynthesis of endosymbiotic algae. —Naturwissenschaften77, 447–450.

    Article  Google Scholar 

  • Schlichter, D. & Fricke, H. W., 1991. Mechanisms of amplification of photosynthetically active radiation in the symbiotic deepwater coralLeptoseris fragilis — Hydrobiologia216/217, 389–394.

    Article  Google Scholar 

  • Schuhmacher, H., 1979. Experimentelle Untersuchungen zur Anpassung von Fungiiden (Scleractinia, Fungiidae) an unterschiedliche Sedimentation- und Bodenverhältnisse. — Int. Revue ges. Hydrobiol.2, 207–243.

    Google Scholar 

  • Sebens, K. P., 1987. Feeding mechanisms of coelenterates. In: Animal energetics. Ed. by T. J. Pandian & F. J. Vernberg, Acad. Press. San Diego,1, 58–60.

    Google Scholar 

  • Solow, A. R. & Gallager, S. M., 1990. Analysis of capture efficiency in suspension feeding: application of nonparametric binary regression. — Mar. Biol.107, 341–344.

    Article  Google Scholar 

  • Spencer Davies, P., 1991. Effect of daylight variations on the energy budgets of shallow-water corals. — Mar. Biol.108, 137–144.

    Google Scholar 

  • Spurr, R. A., 1969. A low-viscosity epoxy embedding medium for electron microscopy. — J. ultrastruct. Res.26, 31–43.

    Article  CAS  PubMed  Google Scholar 

  • Steen, R. G., 1986. Evidence for heterotrophy by zooxanthellae in symbiosis withAiptasia pulchella. — Biol. Bull. mar. biol. Lab., Woods Hole170, 267–278.

    Google Scholar 

  • Yonge, C. M., 1930. Studies on the physiology of corals: I. Feeding mechanisms and food. — Scient. Rep. Gt Barrier Reef Exped.1, 13–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to W. Weber 1923–1987

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlichter, D. A perforated gastrovascular cavity in the symbiotic deep-water coralLeptoseris fragilis: A new strategy to optimize heterotrophic nutrition. Helgolander Meeresunters 45, 423–443 (1991). https://doi.org/10.1007/BF02367177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367177

Keywords