Skip to main content
  • Published:

Consequences of keepingMytilus in the laboratory as assessed by different cellular condition indices

Abstract

Mytilus galloprovincialis Lmk. were maintained in the laboratory for three months in a semicontinuous water flow system. Animals were fed a commercial filter-feeder food and sampled after 0, 21, 35, 49, 77, and 91 days. In order to establish whether laboratory conditions and the food used were deleterious to mussels, their health status was assessed by quantifying different histological parameters of the digestive gland tissue. It was concluded that mussels kept for more than 35 days under the described laboratory conditions showed signs of stress presumably caused by the reproductive state of the mussels investigated. The food used and the nutrition-related health status of the animals were adequate, as shown by transmission electron microscopical studies after the 91-day maintenance period. A stress response was also evoked by a 10-day starvation period, which was reflected by an increased proportion of type I and type IV digestive tubules, and a reduced “Mean Epithelial Thickness” (MET). Finally, the results demonstrate the sensitivity of quantitative histological diagnosis in comparison to subjective tubule grading procedures in the assessment of the degree of stress experienced by mussels.

Literature Cited

  • Agirregoikoa, M. G., 1988.Mytilus edulis bibalbioaren liseri-epitelioaren batezbesteko lodieraren aldakuntz espazio-tenporala Bizkaiko kostaldean. Licenciature Thesis, Univ. of the Basque Country, Bilbao, 71 pp.

    Google Scholar 

  • Agirregoikoa, M. G., Pérez, M. A., Marigómez, J. A. & Angulo, E., 1991. Relationship between quantitative indices of individual and digestive cell conditions in the common mussel,Mytilus edulis L., from the Biscay Coast. — Acta Hydrochim. Hydrobiol.19, 29–37.

    Google Scholar 

  • Anger, K., Storch, V., Anger, V. & Capuzzo, J. M., 1985. Effects of starvation on moult cycle and hepatopancreas of Stage I lobsterHomarus americanus larvae. — Helgoländer Meeresunters.39, 107–116.

    Article  Google Scholar 

  • Auffret, M., 1988. Histopathological changes related to chemical contamination inMytilus edulis from field and experimental conditions. — Mar. Ecol. Prog. Ser.46, 101–107.

    CAS  Google Scholar 

  • Avila, E. M., 1986. Evaluation of practical diets in the culture of the rabbitfish,Siganus guttatus (Bloch) (Pisces: Siganidae) using liver ultrastructural methods. — Zool. Anz.217, 178–191.

    Google Scholar 

  • Axiak, V., George, J. J. & Moore, M. N., 1988. Petroleum hydrocarbons in the marine bivalveVenus verrucosa: accumulation and cellular responses. — Mar. Biol.97, 225–230.

    Article  CAS  Google Scholar 

  • Bayne, B. L., 1973. Physiological changes inMytilus edulis L. induced by temperature and nutritive stress. — J. mar. biol. Ass. U.K.53, 39–58.

    CAS  Google Scholar 

  • Bayne, B. L. & Thompson, R. J., 1970. Some physiological consequences of keepingMytilus edulis in the laboratory. — Helgoländer Meeresunters.20, 526–552.

    Google Scholar 

  • Bayne, B. L., Holland, D. L., Moore, M. N., Lowe, D. M. & Widdows, J., 1978. Further studies on the effects of stress in the adult on the eggs ofMytilus edulis. — J. mar. biol. Ass. U.K.58, 825–841.

    Google Scholar 

  • Berthou, F., Balquet, G., Bodennec, G. & Marchand, M., 1987. The occurrence of hydrocarbons and histopathological abnormalities in oysters from seven years following the wreck of the Amoco Cadiz in Brittany (France). — Mar. environ. Res.23, 103–133.

    Article  CAS  Google Scholar 

  • Bright, D. A. & Ellis, D. E., 1989. Aspects of histology inMacoma carlottensis (Bivalvia: Tellinidae) and “in situ” histopathology related to mine-tailings discharge. — J. mar. biol. Ass. U.K.69, 447–464.

    Google Scholar 

  • Cajaraville, M. P., Díez, G., Larrea, P., Marigómez, J. A. & Angulo, E., 1989. Planimetric parameters of the digestive tubules ofMytilus edulis: Sensitive tools for monitoring petroleum hydrocarbon toxicity? — Abstr. int. Symp. Mussel, Galicia (Spain), 1–15.

  • Cajaraville, M. P., Díez, G., Marigómez, J. A. & Angulo, E., 1990a. Responses of basophilic cells of the digestive gland of mussels to petroleum hydrocarbon exposure. — Dis. aquat. Org.9, 221–228.

    Google Scholar 

  • Cajaraville, M. P., Marigómez, J. A. & Angulo, E., 1990b. Short-term toxic effects of 1-naphthol on the digestive gland-gonad complex of the marine prosobranchLittorina littorea (L.): a light microscopic study. — Archs environ. Contam. Toxicol.19, 17–24.

    CAS  Google Scholar 

  • Cajaraville, M. P., Marigómez, J. A. & Angulo, E., 1990c. Ultrastructural study of the short-term toxic effects of naphthalene on the kidney of the marine prosobranchLittorina littorea. — J. Invertebr. Pathol.55, 215–224.

    CAS  Google Scholar 

  • Catacutan, M. R. & De la Cruz, M., 1989. Growth and mid-gut cells profile ofPenaeus monodon juveniles fed watersoluble-vitamin-deficient diets. — Aquaculture81, 137–144.

    Article  Google Scholar 

  • Couch, J. A., 1984. Atrophy of diverticular epithelium as an indicator of environmental irritants in the oyster,Crassostrea virginica. — Mar. environ. Res.14, 525–526.

    Article  Google Scholar 

  • Fournie, J. W., Foss, S. S. & Couch, J. A., 1988. A multispecies system for evaluation of infectivity and pathogenicity of microbial pest control agents in non-target aquatic species. — Dis. aquat. Org.5, 63–70.

    Google Scholar 

  • Gardner, G. R. & Yevich, P. P., 1988. Comparative histopathological effects of chemically contaminated sediment on marine organisms. — Mar. environ. Res.24, 311–316.

    Article  CAS  Google Scholar 

  • Goldberg, E. D., 1986. The mussel watch concept. — Environ. Monit. Assess.7, 91–103.

    Article  CAS  Google Scholar 

  • Hawkins, A. J. S., Bayne, B. L. & Clarke, K. R., 1983. Coordinated rhythms of digestion, absorption and excretion inMytilus edulis (Bivalvia: Mollusca). — Mar. Biol.74, 41–48.

    Article  Google Scholar 

  • Henry, M., 1987. Glande digestive de la palourdeRuditapes decussatus L. — Vie mar. (Hors sér.)9, 1–439.

    Google Scholar 

  • Hummel, H., 1985. Food intake and growth inMacoma balthica (Mollusca) in the laboratory. — Neth. J. Sea Res.19, 77–83.

    Google Scholar 

  • Langton, R. W., 1975. Synchrony in the digestive diverticula ofMytilus edulis L. — J. mar. biol. Ass. U.K.55, 221–230.

    Google Scholar 

  • Langton, R. W., 1977. Digestive rhythms in the musselMytilus edulis. — Mar. Biol.41, 53–58.

    Article  CAS  Google Scholar 

  • Lanno, R. P., Hickie, B. E. & Dixon, D. G., 1989. Feeding and nutritional considerations in aquatic toxicology. — Hydrobiologia188–189, 525–531.

    Google Scholar 

  • Livingstone, D. R., Moore, M. N. & Widdows, J., 1988. Ecotoxicology: biological effects measurements on molluscs and their use in impact assessment. In: Pollution of the North Sea. Ed. by W. Salomons, E. K. Duursma, B. L. Bayne & U. Förstner, Springer, Berlin, 624–637.

    Google Scholar 

  • Lowe, D. M., 1988. Alterations in the cellular structure ofMytilus edulis resulting from exposure to environmental contaminants under field and experimental conditions. — Mar. Ecol. Prog. Ser.46, 91–100.

    CAS  Google Scholar 

  • Lowe, D. M., Moore, M. N. & Clarke, K. R., 1981. Effects of oil on the digestive cells in mussels: quantitative alterations in cellular and lysosomal structure. — Aquat. Toxicol.1, 213–226.

    Article  CAS  Google Scholar 

  • Marigómez, J. A., Angulo, E. & Moya, J., 1986. Copper treatment of the digestive gland of the slugArion ater L. 2. Morphometrics and histophysiology. — Bull. environ. Contam. Toxicol.36 608–615.

    PubMed  Google Scholar 

  • Marigómez, J. A., Vega, M. M., Cajaraville, M. P. & Angulo, E., 1989. Quantitative responses of the digestive-lysosomal system of winkles to sublethal concentrations of cadmium. — Cell. mol. Biol.35, 555–562.

    PubMed  Google Scholar 

  • Marigómez, J. A., Cajaraville, M. P., Angulo, E. & Moya, J., 1990. Ultrastructural alterations in the renal epithelium of cadmium-treatedLittorina littorea (L.). — Archs environ. Contam. Toxicol.19, 863–871.

    Google Scholar 

  • Marigómez, J. A., Cajaraville, M. P. & Angulo, E., 1991. Effects of sublethal exposure to cadmium on the ultrastructure of the gills of the gastropodLittorina littorea. — Z. mikrosk. -anat. Forsch. (In press.)

  • Morton, B. S., 1983. Feeding and digestion in bivalves. In: The mollusca. Ed. by M. Wilburg & A. S. M. Saleuddin. Acad. Press, New York,5, 563–583.

    Google Scholar 

  • Owen, G., 1970. The fine structure of the digestive tubules of the marine bivalveCardium edule. —Phil. Trans. R. Soc. Lond.258, 245–260.

    Google Scholar 

  • Owen, G., 1972. Lysosomes, peroxisomes and bivalves. — Sci. Prog., Oxford60, 299–318.

    CAS  Google Scholar 

  • Owen, G., 1973. The fine structure and histochemistry of the digestive diverticula of the protobranchiate bivalveNucula sulcata. — Proc. R. Soc. Lond.183, 249–264.

    Google Scholar 

  • Papathanassiou, E. & King, P. E., 1986. Ultrastructural changes in hepatopancreatic cells of the prawnPalaemon serratus induced by exposure to acutely toxic cadmium concentrations. — Dis. aquat. Org.2, 39–47.

    CAS  Google Scholar 

  • Pérez, M. A., 1989. Segulmiento del estrés ambiental después de un vertido de crudo: análisis histológico enMytilus edulis (L.). Licenciature Thesis, Univ. of the Basque Country, Bilbao, 123 pp.

    Google Scholar 

  • Recio, A., Marigómez, J. A., Angulo, E. & Moya, J., 1988. Zinc treatment of the digestive gland of the slugArion ater L. 2. Sublethal effects at the histological level. — Bull. environ. Contam. Toxicol.41, 865–871.

    CAS  PubMed  Google Scholar 

  • Robinson, A. G. & Dillaman, R. M., 1985. The effects of naphthalene on the ultrastructure of the hepatopancreas of the fiddler crab,Uca minax. — J. Invertebr. Pathol.45, 311–323.

    CAS  PubMed  Google Scholar 

  • Robinson, W. E., 1983. Assessment of bivalve intracellular digestion based on direct measurements. — J. moll. Stud.49, 1–8.

    Google Scholar 

  • Robinson, W. E. & Langton, R. W., 1980. Digestion in a subtidal population ofMercenaria mercenaria (Bilvalvia). — Mar. Biol.58, 173–179.

    Article  Google Scholar 

  • Seed, R., 1969. The ecology ofMytilus edulis L. (Lamellibranchiata) on exposed rocky shores. —Oecologia3, 277–316.

    Google Scholar 

  • Segner, H., Burkhardt, P., Avila, E. M., Juario, J. V. & Storch, V., 1987. Nutrition-related histopathology of the intestine of milkfishChanos chanos Fry. — Dis. aquat. Org.2, 99–107.

    Google Scholar 

  • Sindermann, C. J., 1988. Biological indicators and biological effects of estuarine/coastal pollution. —Wat. Resour. Bull.24, 931–939.

    CAS  Google Scholar 

  • Sokal, R. R. & Rohlf, F. J., 1979. Biometría. Blume, Madrid, 832 pp.

    Google Scholar 

  • Storch, V. & Burkhardt, P., 1984. Influence of nutritional stress on the hepatopancreas ofTalitrus saltator (Pericarida, Amphipoda). — Helgoländer Meeresunters.38, 65–73.

    Google Scholar 

  • Storch, V., Janssen, H. H. & Cases, E., 1982. The effects of starvation on the hepatopancreas of the coconut crab,Birgus latro (L.) (Crustacea, Decapoda). — Zool. Anz.208, 115–123.

    CAS  Google Scholar 

  • Thompson, R. J., Ratcliffe, N. A. & Bayne, B. L., 1974. Effects of starvation on structure and function in the digestive gland of the musselMytilus edulis L. — J. mar. biol. Ass. U. K.54, 699–712.

    CAS  Google Scholar 

  • Thompson, R. J., Bayne, C. J., Moore, M. N. & Carefoot T. J., 1978. Haemolymph volume, changes in the biochemical composition of the blood, and cytological responses of the digestive cells inMytilus californianus Conrad induced by nutritional, thermal and exposure stress. — J. comp. Physiol.127, 287–298.

    CAS  Google Scholar 

  • Vega, M. M., Marigómez, J. A. & Angulo, E., 1989. Quantitative alterations in the structure of the digestive cell ofLittorina littorea on exposure to cadmium. — Mar. Biol.103, 547–553.

    Article  CAS  Google Scholar 

  • Vogt, G., 1987. Monitoring of environmental pollutants such as pesticides in prawn aquaculture by histological diagnosis. — Aquaculture67, 157–164.

    Article  Google Scholar 

  • Vogt, G., Quinitio, E. T. & Pascual, F. P., 1986.Leucaena leucocephala leaves in formulated feed forPenaeus monodon: a concrete example of the application of histology in nutrition research. —Aquaculture59, 209–234.

    Article  Google Scholar 

  • Weibel, E. R., 1979. Stereological methods. Acad. Press, London,1, 1–415.

    Google Scholar 

  • Winstead, J. T. & Couch, J. A., 1988. Enhancement of protozoan pathogenPerkinsus marinus infections in american oystersCrassostrea virginica exposed to the chemical carcinogen n-nitrosodiethylamine (DENA). — Dis. aquat. Org.5, 205–213.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cajaraville, M.P., Díez, G., Marigómez, I.A. et al. Consequences of keepingMytilus in the laboratory as assessed by different cellular condition indices. Helgolander Meeresunters 45, 445–464 (1991). https://doi.org/10.1007/BF02367178

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367178

Keywords