Skip to main content
  • Published:

A comparison of carbon-specific respiration rates in gelatinous and non-gelatinous zooplankton: A search for general rules in zooplankton metabolism

Abstract

Using 470 data from the literature the dry weight-specific respiration rates of gelatinous zooplankton (cnidarians, ctenophores and salps) and non-gelatinous zooplankton (mainly crustacea) were converted to carbon-specific values. The resulting carbon-specific respiration rates showed no significant differences between the two groups of zooplankton, indicating similar oxygen requirements per gram of carbon biomass. From this finding, it can be suggested that the differences in the rates of oxygen consumption measured in the two types of zooplankton in the sea can be explained by the carbon biomass ratio between gelatinous and non-gelatinous zooplankton. Furthermore, the low rate of metabolism of gelatinous species compared with that of non-gelatinous animals of the same volume can be attributed predominantly to the relatively low organic matter content in the former. It is recommended that all weight-specific metabolism rates be expressed using carbon as body mass unit (e.g. mg O2 gC−1 d−1) which enables more accurate comparisons between individuals exhibiting different dry weight/carbon ratios.

Literature Cited

  • Andersen, V., 1985. Filtration and ingestion rates ofSalpa fusiformis Cuvier (Tunicata: Thaliacea): Effects of size, individual weight and algal concentration. — J. exp. mar. Biol. Ecol.87, 13–29.

    Article  Google Scholar 

  • Biggs, D. C., 1977. Respiration and ammonium excretion by open ocean gelatinous zooplankton. —Limnol. Oceanogr.22, 108–117.

    CAS  Google Scholar 

  • Biggs, D. C., 1982. Zooplankton excretion and NH +4 -cycling in near surface waters of the Southern Ocean. I. Ross Sea, austral summer 1977–1978. — Polar Biol.1, 55–67.

    Article  CAS  Google Scholar 

  • Bone, Q. & Trueman, E. R., 1983. Jet propulsion in salps (Tunicata: Thaliacea). — J. Zool.201, 481–506.

    Google Scholar 

  • Bone, Q. & Trueman, E. R., 1984. Jet propulsion inDoliolum (Tunicata: Thaliacea). — J. exp. mar. Biol. Ecol.76, 105–118.

    Article  Google Scholar 

  • Cetta, C. M., Madin, L. P. & Kremer, P., 1986. Respiration and excretion by oceanic salps. — Mar. Biol.91, 529–537.

    Article  Google Scholar 

  • Childress, J. J. & Nygaard, M., 1974. Chemical composition and buoyancy of midwater crustaceans as a function of occurrence off Southern California. — Mar. Biol.27, 225–238.

    Article  CAS  Google Scholar 

  • Cloud, P. & Glaessner, M. F., 1982. The Ediacarian period and system: Metazoa inherit the earth. —Science N.Y.217, 783–792.

    Google Scholar 

  • Deibel, D., 1985. Clearance rates of the salpThalia democratica fed naturally occurring particles. —Mar. Biol.86, 47–54.

    Article  Google Scholar 

  • Flint, M. V., Drits, A. V. & Pasternak, A. F., 1991. Characteristic features of body composition and metabolism in some interzonal copepods. — Mar. Biol.111, 199–205.

    Article  CAS  Google Scholar 

  • Glaessner, M. F., 1962. Pre-Cambrian fossils. — Biol. Rev.37, 467–494.

    Google Scholar 

  • Gyllenberg, G. & Greve, W., 1979. Studies on oxygen uptake in ctenophores. — Annls. zool. fenn.16, 44–49.

    Google Scholar 

  • Härdstedt-Roméo, M., 1982. Some aspects of the chemical composition of plankton from the North-Western Mediterranean Sea. — Mar. Biol.70, 229–236.

    Article  Google Scholar 

  • Hirota, J., 1972. Laboratory culture and metabolism of the planktonic ctenophorePleurobrachia bachei A. Agassiz. In: Biological oceanography of the northern North Pacific Ocean. Ed. by A. Y. Takenouti. Idemitsu Shoten, Tokyo, 465–484.

    Google Scholar 

  • Ikeda, T., 1974. Nutritional ecology of marine zooplankton. — Mem. Fac. Fish. Hokkaido Univ.22, 1–97.

    Google Scholar 

  • Ikeda, T., 1985. Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. — Mar. Biol.85, 1–11.

    Article  Google Scholar 

  • Ikeda, T. & Bruce, B., 1986. Metabolic activity and elemental composition of krill and other zooplankton from Prydz Bay, Antarctica, during early summer (November–December). — Mar. Biol.92, 545–555.

    Article  CAS  Google Scholar 

  • Ikeda, T. & Mitchell, A. W., 1982. Oxygen uptake, ammonia excretion and phosphate excretion by krill and other antarctic zooplankton in relation to their body size and chemical composition. —Mar. Biol.71, 283–298.

    Article  Google Scholar 

  • Ikeda, T. & Skjoldal, H. R., 1980. The effect of laboratory conditions on the extrapolation of experimental measurements to the ecology of marine zooplankton. VI. Changes in physiological activities and biochemical components ofAcetes sibogae australis andAcartia australis after capture. — Mar. Biol.58, 285–293.

    Article  CAS  Google Scholar 

  • Ikeda, T. & Skjoldal, H. R., 1989. Metabolism and elemental composition of zooplankton from the Barents Sea during early Arctic summer. — Mar. Biol.100, 173–183.

    CAS  Google Scholar 

  • Kerstan, M., 1977. Untersuchungen zur Nahrungsökologie vonAurelia aurita Lam. Diss. Univ. Kiel, 95 pp.

  • Kremer, P., 1976. Excretion and body composition of the ctenophoreMnemiopsis leidyi (A. Agassiz): Comparisons and consequences. In: Proceedings of the 10th European symposium on marine biology. Ed. by G. Persoone & F. Jaspers. Universa Press, Wetteren,2, 351–362.

    Google Scholar 

  • Kremer, P., 1977. Respiration and excretion by the ctenophoreMnemiopsis leidyi. — Mar. Biol.44, 43–50.

    Article  CAS  Google Scholar 

  • Kremer, P., 1982. Effect of food availability on the metabolism of the ctenophoreMnemiopsis mccradyi. — Mar. Biol.,71, 149–156.

    Article  Google Scholar 

  • Kremer, P., Canino, M. F. & Gilmer, R. W., 1986. Metabolism of epipelagic tropical ctenophores. —Mar. Biol.90, 403–412.

    Article  Google Scholar 

  • Krüger, F., 1968. Stoffwechsel und Wachstum bei Scyphomedusen. — Helgoländer wiss. Meeresunters.18, 367–383.

    Article  Google Scholar 

  • Larson, R. J., 1986. Water content, organic content, and carbon and nitrogen composition of medusae from the Northeast Pacific. — J. exp. mar. Biol. Ecol.99, 107–120.

    Article  Google Scholar 

  • Larson, R. J., 1987a. Respiration and carbon turnover rates of medusae from the NE Pacific. — Comp. Biochem. Physiol.87 A, 93–100.

    Google Scholar 

  • Larson, R. J., 1987b. Costs of transport for the scyphomedusaStomolophus meleagris L. Agassiz. —Can. J. Zool.65, 2690–2695.

    Google Scholar 

  • Madin, L. P., 1990. Aspects of jet propulsion in salps. — Can. J. Zool.68, 765–777.

    Google Scholar 

  • Menzel, D. W. & Ryther, J. H., 1961. Zooplankton in the Sargasso Sea off Bermuda and its relation to organic production. — J. Cons. perm. int. Explor. Mer26, 250–258.

    Google Scholar 

  • Mullin, M. M., 1983. In situ measurements of filtering rates of the salpThalia democratica, on phytoplankton and bacteria. — J. Plankt. Res.5, 279–288.

    Google Scholar 

  • Omori, M., 1969. Weight and chemical composition of some important oceanic zooplankton in the North Pacific Ocean. — Mar. Biol.3, 4–10.

    Article  CAS  Google Scholar 

  • Omori, M. & Ikeda, T., 1984. Methods in marine zooplankton ecology. Wiley, New York, 332 pp.

    Google Scholar 

  • Phillipson, J., 1981. Bioenergetic options and phylogeny. In: Physiological ecology: an evolutionary approach to ressource use. Ed. by C. P. Towsend & P. Calow. Blackwell, London, 20–45.

    Google Scholar 

  • Platt, T., Brown, V. & Irwin, B., 1969. Caloric and carbon equivalents of zooplankton biomass. — J. Fish. Res. Bd Can.26, 2345–2349.

    CAS  Google Scholar 

  • Raymont, J. E. G., 1983. Plankton and productivity in the oceans. II. Zooplankton. Pergamon Press, Oxford, 824 pp.

    Google Scholar 

  • Reinke, M., 1987. Zur Nahrungs- und Bewegungsphysiologie vonSalpa thompsoni undSalpa fusiformis. — Ber. Polarf.36, 1–86.

    Google Scholar 

  • Schneider, G., 1988. Chemische Zusammensetzung und Biomasseparameter der OhrenqualleAurelia aurita. — Helgoländer Meeresunters.42, 319–327.

    Article  Google Scholar 

  • Schneider, G., 1989a. Carbon and nitrogen content of marine zooplankton dry material; a short review. — Plankt. Newsl.11, 4–7.

    Google Scholar 

  • Schneider, G., 1989b. Estimation of food demands ofAurelia aurita medusae populations in the Kiel Bight, Western Baltic. — Ophelia31, 17–27.

    Google Scholar 

  • Schneider, G., 1990. A comparison of carbon based ammonia excretion rates between gelatinous and non-gelatinous zooplankton: Implications and consequences. — Mar. Biol.106, 219–225.

    Article  CAS  Google Scholar 

  • Schneider, G. & Lenz, J., 1991. Zooplankton community metabolism in the upper 200 m of the central Red Sea and the Gulf of Aden — Mar. Ecol. Prog. Ser.77, 301–306.

    Google Scholar 

  • Shushkina, E. A. & Pavlova, Ye. P., 1973. Metabolism rate and production of zooplankton in the equatorial Pacific. — Oceanology, Wash.13, 278–284.

    Google Scholar 

  • Southward, A. J., 1955. Observations on the ciliary currents of the jellyfishAurelia aurita L. — J. mar. biol. Ass. U. K.34, 201–216.

    Google Scholar 

  • Thill, H., 1937. Beiträge zur Kenntnis derAurelia aurita (L.). — Z. wiss. Zool.150, 51–97.

    CAS  Google Scholar 

  • Trueman, E. R., Bone, Q. & Braconnot, J.-C., 1984. Oxygen consumption in swimming salps (Tunicata: Thaliacea). — J. exp. Biol.110, 323–327.

    Google Scholar 

  • Weisse, T., 1985. Die Biomasse und Stoffwechselaktivität des Mikro- und Mesozooplanktons in der Ostsee. — Ber. Inst. Meeresk. Kiel144, 127 pp.

  • Youngbluth, M. J. Kremer, P., Bailey, T. G. & Jacoby, C. A., 1988. Chemical composition, metabolic rates and feeding behavior of the midwater ctenophoreBathocyroe fosteri. — Mar. Biol.98, 87–94.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, G. A comparison of carbon-specific respiration rates in gelatinous and non-gelatinous zooplankton: A search for general rules in zooplankton metabolism. Helgolander Meeresunters 46, 377–388 (1992). https://doi.org/10.1007/BF02367205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367205

Keywords