Skip to main content
  • Marine Ecology: Microbial Processes
  • Published:

Microbial hydrolytic enzyme activities in deep-sea sediments

Abstract

The potential hydrolysis rates of five different hydrolytic enzymes were determined in deep-sea sediments from the northeast Atlantic (BIOTRANS area) in March 1992. Fluorogenic substrates were used to assay extracellular α- and β-glucosidase, chitobiase, lipase and aminopeptidase. The potential activity of most of the enzymes investigated decreased to a minimum within the upper two centimetre range, whereas aminopeptidase was high over the upper five centimetre range. Exceptions were found when macrofaunal burrows occurred in the cores, always increasing the activities of some hydrolases, and therefore indicating the impact of bioturbation on degradation rates. The most striking feature of the investigated enzyme spectrum was the 50–2000 times higher specific activity of the aminopeptidase, compared with the other hydrolases. The activity of hydrolytic enzymes most likely reflects the availability of their respective substrates and is not a function of bacterial biomass.

Literature Cited

  • Alldredge, A. L. & Silver, M. W., 1988. Characteristics, dynamics and significance of marine snow. —Prog. Oceanogr.20, 41–82.

    Article  Google Scholar 

  • Aller, J. Y. & Aller, R. C., 1986. Evidence for localized enhancement of biological activity associated with tube and burrow structures in deep-sea sediments at the HEBBLE site, western North Atlantic. — Deep Sea Res.33, 755–790.

    CAS  Google Scholar 

  • Aller, R. C. & Yingst, J. Y., 1978. Biogeochemistry of tube dwellings: a study of the sedentary polychaeteAmphitrite ornata (Leidy). — J. mar. Res.36, 201–354.

    CAS  Google Scholar 

  • Barnett, P. R. O., Watson, J. & Conelly, D., 1984. A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments. — Oceanologica Acta7, 399–408.

    Google Scholar 

  • Berner, R. A., 1980. Early diagenesis — a theoretical approach. Princeton Univ. Press, Princeton, 421 pp.

    Google Scholar 

  • Billen, G., 1982. Modelling the process of organic matter degradation and nutrient recycling in sedimentary systems. In: Sediment microbiology. Ed. by D. B. Nedwell & C. M. Brown. Acad. Press, London, 15–52.

    Google Scholar 

  • Boetius, A., 1992. Extrazelluläre hydrolytische Enzymaktivitäten als Parameter für mikrobielle Prozesse in Tiefseesedimenten. Dipl. Arb., Univ. Hamburg, 85 pp.

  • Chrost, R. J., 1991. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Microbial enzymes in the aquatic environment. Ed. by R. J. Chrost, Springer, New York, 29–59.

    Google Scholar 

  • Deming, J. W. & Yager, P. L., 1992. Natural bacterial assemblages in deep-sea sediments: towards a global view. In: Deep-sea food chains and the global carbon cycle. Ed. by G. T. Rowe & V. Pariente. Kluwer, Dordrecht, 11–28.

    Google Scholar 

  • Emerson, S., Fischer, K., Reimers, C. E. & Heggie, D., 1985. Organic carbon dynamics and preservation in deep-sea sediments. — Deep Sea Res.32, 1–21.

    CAS  Google Scholar 

  • Gaillard, J. F. & Rabouille, C., 1992. Using Monod kinetics in geochemical models of organic carbon mineralization in deep-sea surficial sediments. In: Deep-sea food chains and the global carbon cycle. Ed. by G. T. Rowe & V. Pariente. Kluwer, Dordrecht, 309–323.

    Google Scholar 

  • Hoppe, H.-G., 1983. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. — Mar. Ecol. Prog. Ser.11, 299–308.

    CAS  Google Scholar 

  • IUB/IUPAC, 1973. Enzyme nomenclature. Elsevier, Amsterdam, 443 pp.

    Google Scholar 

  • Karl, D. M., Knauer, G. A. & Martin, J. H., 1988. Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. — Nature, Lond.332, 428–440.

    Article  Google Scholar 

  • King, G. M., 1986. Characterization of β-glucosidase activity in intertidal marine sediments. — Appl. environ. Microbiol.51, 373–380.

    CAS  PubMed  Google Scholar 

  • Köster, M. & Meyer-Reil, L. A., 1991. Hydrolytic activities of organisms and biogenic structures in deep-sea sediments. In: Microbial enzymes in aquatic environments. Ed. by R. J. Chrost. Springer, New York, 298–310.

    Google Scholar 

  • Lochte, K., 1992. Bacterial standing stock and consumption of organic carbon in the benthic boundary layer of the abyssal North Atlantic. In: Deep-sea food chains and the global carbon cycle. Ed. by G. T. Rowe & V. Pariente. Kluwer, Dordrecht, 1–10.

    Google Scholar 

  • Lochte, K. & Rheinheimer, G., 1990. Bakterien im Sediment und bodennahem Wasser. — Ber. Zent. Meeres-Klimaforsch.10, 55–77.

    Google Scholar 

  • Meyer-Reil, L. A., 1986. Measurement of hydrolytic activity and incorporation of dissolved organic substrates by microorganisms in marine sediments. — Mar. Ecol. Prog. Ser.31, 143–149.

    CAS  Google Scholar 

  • Meyer-Reil, L. A., 1987. Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments. — Appl. environ. Microbiol.53, 1748–1755.

    CAS  PubMed  Google Scholar 

  • Meyer-Reil, L. A., 1991. Ecological aspects of enzymatic activities in marine sediments. In: Microbial enzymes in aquatic environments. Ed. by R. J. Chrost. Springer, New York, 84–95.

    Google Scholar 

  • Pfannkuche, O., 1992. Organic carbon flux through the benthic community in the temperate abyssal northeast Atlantic. In: Deep-sea food chains and the global carbon cycle. Ed. by G. T. Rowe & V. Pariente. Kluwer, Dordrecht, 183–197.

    Google Scholar 

  • Pfannkuche, O., Beckmann, W., Christiansen, B., Lochte, K., Rheinheimer, K., Thiel, H. & Weikert, H., 1990. Biologischer Vertikaltransport und Energiehaushalt in der bodennahen Wasserschicht der Tiefsee. — Ber. Zent. Meeres-Klimaforsch.10, 1–159.

    Google Scholar 

  • Priest, F. G., 1984. Extracellular enzymes. — Aspects Microbiol.9, 1–79.

    Google Scholar 

  • Rice, D. L., 1982. The detritus nitrogen problem: new observations and perspectives from organic geochemistry. — Mar. Ecol. Prog. Ser.9, 153–162.

    CAS  Google Scholar 

  • Rowe, G. T., Sibuet, M., Deming, J., Khripounoff, A., Tietjen, J., Macko, S. & Theroux, R., 1991. “Total” sediment biomass and preliminary estimates of organic residence time in deep-sea benthos. — Mar. Ecol. Prog. Ser.79, 99–114.

    Google Scholar 

  • Smucker, R. A. & Kim, C. K., 1991. Chitinase activity in estuarine waters. In: Microbial enzymes in aquatic environments. Ed. by R. J. Chrost. Springer, New York, 249–269.

    Google Scholar 

  • Tietjen, J. H., 1992. Abundance and biomass of metazoan meiobenthos in the deep-sea. In: Deep-sea food chains and the global carbon cycle. Ed. by G. T. Rowe & V. Pariente. Kluwer, Dordrecht, 45–62.

    Google Scholar 

  • Westrich, J. T. & Berner, R. A., 1984. The role of sedimentary organic matter in bacterial sulfate reduction: the “G”-model tested. — Limnol. Oceanogr.29, 236–249.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boetius, A. Microbial hydrolytic enzyme activities in deep-sea sediments. Helgolander Meeresunters 49, 177–187 (1995). https://doi.org/10.1007/BF02368348

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368348

Keywords