Skip to main content
  • Marine Ecology: Microbial Processes
  • Published:

Microbial colonization of copepod body surfaces and chitin degradation in the sea

Abstract

Next to cellulose, chitin (composed of N-acetyl-D-glucosamine sugar units) is the most frequently occurring biopolymer in nature. Among the most common sources of chitin in the marine environment are copepods and the casings of their fecal pellets. During the mineralization of chitin by microorganisms, which occurs chiefly by means of exoenzymes, nitrogen and carbon are returned to the nutrient cycle. In this study, the microbial colonization of the moults (exuviae), carcasses and fecal pellets ofTisbe holothuriae Humes (Copepoda: Harpacticoida) was examined in the laboratory. Results obtained with DAPI staining indicated that a succession of microorganisms from rodshaped bacteria and cocci to starlike aggregates took place, followed by the yeastlike fungusAureobasidium pullulans (de Bary) Arnaud. No differences were noted between moults from various developmental stages, from nauplius to adult. The ventral sides and extremities of exuviae and carcasses were more rapidly colonized than other parts of the bodies. The casings of fecal pellets were frequently surrounded by bacteria with fimbriae or slime threads. In situ studies of chitin degradation (practical grade chitin from crustacean shells) with the mesh bag technique showed that about 90% of the original substance was lost after 3 months exposure in seawater at temperatures between 10 and 18°C. Chitinase activity was measured in the water at two stations near Helgoland, an island in the North Sea. A higher exoenzymatic activity was found in the rocky intertidal zone, compared to the Station Cable Buoy located between the main and Düne island. These values correspond to the higher bacteria numbers (cfu ml−1) found in the rocky intertidal: 10 to 100× greater than those found at the Cable Buoy Station.

Literature Cited

  • Boyer, J. N. & Kator, H. I., 1985. Method for measuring microbial degradation and mineralization of14C-labeled chitin obtained from the blue crab,Callinectes sapidus. — Microb. Ecol.11, 185–192.

    Article  CAS  Google Scholar 

  • Capriotti, A., 1962. Yeasts of the Miami, Florida, area. III. From sea water, marine animals and decaying materials. — Arch. Microbiol.42, 407–414.

    CAS  Google Scholar 

  • Coleman, A. W., 1980. Enhanced detection of bacteria in natural environments by fluorochrome staining of DNA. — Limnol. Oceanogr.25, 948–951.

    Google Scholar 

  • Dunn, D. F. & Liberman, M. H., 1983. Chitin in sea anemone shells. — Science, N.Y.221, 157–159.

    CAS  Google Scholar 

  • Fukami, K., Simidu, U. & Taga, N., 1985. Microbial decomposition of phyto- and zooplankton in seawater. II: Changes in the bacterial community. — Mar. Ecol. Prog. Ser.21, 7–13.

    Google Scholar 

  • Gardner, W. D., Hinga, K. R. & Marra, J., 1983. Observations on the degradation of biogenic material in the deep ocean with implications on accuracy of sediment trap fluxes. — J. mar. Res.41, 195–214.

    Google Scholar 

  • Gooday, G. W., 1990. The ecology of chitin degradation. In: Advances in microbial ecology. Ed. by K. C. Marshall. Plenum Press, New York, 387–430.

    Google Scholar 

  • Greco, N., Bussers, J.-C., Daele, Y. van & Goffinet, G., 1990. Ultrastructural localization of chitin in the cystic wall ofEuplotes muscicola Kahl (Ciliata, Hypotrichia). — Eur. J. Protistol.26, 75–80.

    Google Scholar 

  • Hermanides-Nijhof, E. J., 1977.Aureobasidium and allied genera. — Stud. Mycol.15, 141–177.

    Google Scholar 

  • Hickel, W., Mangelsdorf, P., Hagmeier, E. & Treutner, K., 1991. 30 Jahre Helgoland-Reede-Zeitreihe. — Jber. Biol. Anst. Helgoland1991, 40–44.

    Google Scholar 

  • Hillman, K., Gooday, G. W. & Prosser, J. I., 1989. The mineralization of chitin in the sediments of the Ythan estuary, Aberdeenshire, Scotland. — Estuar. coast. Shelf Sci.29, 601–612.

    CAS  Google Scholar 

  • Hood, M. A. & Meyers, S. P., 1973. The biology of aquatic chitinoclastic bacteria and their chitinolytic activities. — La Mer11, 213–229.

    CAS  Google Scholar 

  • Hood, M. A. & Meyers, S. P., 1977. Rates of chitin degradation in an estuarine environment. — J. oceanogr. Soc. Japan33, 328–334.

    Google Scholar 

  • Hoppe, H.-G., 1983. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. — Mar. Ecol. Prog. Ser.11, 299–308.

    CAS  Google Scholar 

  • Huq, A., Small, E. B., West, P. A., Huq, M. I., Rahman, R. & Colwell, R. R., 1983. Ecological relationships betweenVibrio cholerae and planktonic crustacean copepods. — Appl. environ. Microbiol.45, 275–283.

    CAS  PubMed  Google Scholar 

  • Johnstone, J., 1908. Conditions of life in the sea. Cambridge Univ. Press, Cambridge, 332 pp.

    Google Scholar 

  • Kaneko, T. & Colwell, R. R., 1978. The annual cycle ofVibrio parahaemolyticus in Chesapeake Bay. — Microb. Ecol.4, 135–155.

    Google Scholar 

  • Kohlmeyer, J., 1972. Marine fungi deteriorating chitin of hydrozoa and keratin-like annelid tubes. —Mar. Biol.12, 277–284.

    Article  Google Scholar 

  • Kohlmeyer, J. & Kohlmeyer, E., 1979. Marine mycology. Acad. Press, New York, 690 pp.

    Google Scholar 

  • Lavilla-Pitogo, C. R., Baticados, M. C. L., Cruz-Lacierda, E. R. & Pena, L. D. de la, 1990. Occurrence of luminous bacterial disease ofPenaeus monodon larvae in the Philippines. — Aquaculture91, 1–13.

    Article  Google Scholar 

  • Meyers, S. P., Ahearn, D. G., Gunkel, W. & Roth, F. J., 1967. Yeasts from the North Sea. —Mar. Biol.1, 118–123.

    Article  Google Scholar 

  • Minas, W., Gunkel, W. & Tadday, G., 1986. An open flow-through chamber system — a new tool for experimental ecological investigations in the marine sublittoral. — Mar. environ. Res.20, 299–305.

    Article  Google Scholar 

  • Nagasawa, S., 1989. Bacterial epibionts of copepods. — Sci. Prog.73, 169–176.

    Google Scholar 

  • Nagasawa, S. & Nemoto, T., 1986. The widespread occurrence of copepod — bacterial associations in coastal waters. — Syllogeus58, 379–384.

    Google Scholar 

  • Nagasawa, S. & Terazaki, M., 1987. Bacterial epibionts of the deep-sea copepodCalanus cristatus Krøyer. — Oceanol. Acta10, 475–479.

    Google Scholar 

  • Nagasawa, S., Simidu, U. & Nemoto, T., 1985. Scanning electron microscopy investigation of bacterial colonization of the marine copepodAcartia clausi. — Mar. Biol.87, 61–66.

    Google Scholar 

  • O'Brien, M. & Colwell, R. R., 1987. A rapid test for chitinase activity that uses 4-methylumbelliferyl-N-acetyl-β-D-glucosaminide. — Appl. environ. Microbiol.53, 1718–1720.

    PubMed  Google Scholar 

  • Obst, U. & Holzapfel-Pschorn, A., 1988. Enzymatische Tests für die Wasseranalytik. Oldenbourg, München, 86 pp.

    Google Scholar 

  • Porter, K. G. & Feig, Y. S., 1980. The use of DAPI for identifying and counting aquatic microflora. —Limnol. Oceanogr.25, 943–948.

    Google Scholar 

  • Rheinheimer, G., 1991. Mikrobiologie der Gewässer. Fischer, Jena, 294 pp.

    Google Scholar 

  • Rieper, M., 1978. Bacteria as food for marine harpacticoid copepods. — Mar. Biol.45, 337–345.

    Article  Google Scholar 

  • Rieper-Kirchner, M., 1989. Microbial degradation of North Sea macroalgae: field and laboratory studies. — Botanica mar.32, 241–252.

    Google Scholar 

  • Roth, F. J., Orpurt, P. A. & Ahearn, D. G., 1964. Occurrence and distribution of fungi in a subtropical marine environment. — Can. J. Bot.42, 375–383.

    Google Scholar 

  • Rüttimann, C., Vicuña, R., Mozuch, M. D. & Kirk, T. K., 1991. Limited bacterial mineralization of fungal degradation intermediates from synthetic lignin. — Appl. environ. Microbiol.57, 3652–3655.

    PubMed  Google Scholar 

  • Seki, H., 1965. Microbiological studies on the decomposition of chitin in marine environment. IX: Rough estimation on chitin decomposition in the ocean. — J. oceanogr. Soc. Japan21, 253–260.

    Google Scholar 

  • Seki, H. & Taga, N., 1963. Microbiological studies on the decomposition of chitin in marine environment. I: Occurrence of chitinoclastic bacteria in the neritic region. — J. oceanogr. Soc. Japan19, 101–108.

    Google Scholar 

  • Sieburth, J. McN., 1975. Microbial seascapes. Univ. Park Press, Baltimore, plates.

    Google Scholar 

  • Simidu, U., Ashino, K. & Kaneko, E., 1971. Bacterial flora of phyto- and zoo-plankton in the inshore water of Japan. — Can. J. Microbiol.17, 1157–1160.

    CAS  PubMed  Google Scholar 

  • Smucker, R. A. & Dawson, R., 1986. Products of photosynthesis by marine phytoplankton: chitin in TCA “protein” precipitates. — J. exp. mar. Biol. Ecol.104, 143–152.

    Article  CAS  Google Scholar 

  • Sochard, M. R., Wilson, D. F., Austin, B. & Colwell, R. R., 1979. Bacteria associated with the surface and gut of marine copepods. — Appl. environ. Microbiol.37, 750–759.

    PubMed  Google Scholar 

  • Tamplin, M. L., Gauzens, A. L., Huq, A., Sack, D. A. & Colwell, R. R., 1990. Attachment ofVibrio cholerae Serogroup 01 to zooplankton and phytoplankton of Bangladesh waters. — Appl. environ. Microbiol.56, 1977–1980.

    CAS  PubMed  Google Scholar 

  • Weyland, H. & Helmke, E., 1989. Barophilic and psychrophilic bacteria in the Antarctic Ocean. In: Recent advances in microbial ecology. Ed. by T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita & A. Uchida. Japan Scientific Societies Press, Tokyo, 43–47.

    Google Scholar 

  • Wolter, K. & Rheinheimer, G., 1977. Bakteriologische Untersuchungen an in der Brandungszone angetriebenem Algenmaterial. — Botanica mar.20, 171–181.

    Google Scholar 

  • Yoshikoshi, K. & Kô, Y., 1988. Structure and function of the peritrophic membranes of copepods. —Bull. Jap. Soc. scient. Fish.54, 1077–1082.

    Google Scholar 

  • Zdanowski, M. K., 1988. Matter conversion in the course of krill (Euphausia superba Dana) decomposition in the Antarctic ecosystem. — Polskie Arch. Hydrobiol.35, 65–96.

    Google Scholar 

  • ZoBell, C. E. & Rittenberg, S. C., 1937. The occurrence and characteristics of chitinoclastic bacteria in the sea. — J. Bact.35, 275–287.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchner, M. Microbial colonization of copepod body surfaces and chitin degradation in the sea. Helgolander Meeresunters 49, 201–212 (1995). https://doi.org/10.1007/BF02368350

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368350

Keywords