Skip to main content
  • North Sea Research: Marine Ecophysiology, Parasite-Host Relationships
  • Published:

How to overcome osmotic stress? Marine crabs conquer freshwater. New insights from modern electrophysiology

Abstract

In the present article we review our findings on split lamella preparations of crab gills mounted in modified Ussing-chambers with respect to mechanistic and ecophysiological aspects. The leaky gill epithelium of shore crabs adapted to brackish water absorbs Na+ and Cl in a coupled mode, and shows similarities to other salt-absorbing epithelia exposed to moderately diluted media. The results so far obtained for NaCl uptake across the gills of the shore crab are compatible with a transport model where two cell types operate in parallel, one displaying cotransport-like NaCl absorption, similar to that in the thick ascending limb of Henle's loop of the mammalian mephron, and the other one with characteristics of amiloride-sensitive, channel-mediated Na+ uptake by frog skin. Although there is no clear evidence for the apical mechanisms in this model, it may serve as a good basis for more detailed studies in the future. The moderately tight gill epithelium of freshwater adapted Chinese crabs absorbs Na+ and Cl independently from each other, and shows similarities to other salt-absorbing epithelia exposed to freshwater. The characteristics of a positive, Na+-dependent short-circuit current with externally Cl-free saline indicate that active Na+ uptake proceeds in a frog-skin-like mode via apical Na+-channels and the basolateral Na+/K+-pump. The nature of a negative short-circuit current with external Cl-saline indicates that active and Na+-independent Cl uptake is driven by an apical V-type H+-pump and proceeds via apical Cl/ HCO3 -exchange and basolateral Cl-channels.

Literature Cited

  • Benos, D. J., 1982. Amiloride: a molecular probe of sodium transport in tissues and cells. — Am. J. Physiol.242, C131–145.

    CAS  PubMed  Google Scholar 

  • Böttcher, K., Siebers, D., Becker, W. & Petrausch, G., 1991. Physiological role of branchial carbonic anhydrase in the shore crabCarcinus maenas. — Mar. Biol.110, 337–342.

    Article  Google Scholar 

  • Dannenmaier, B., Heinke, B., Weber, W. M. & Clauss, W., 1991. Amiloride-sensitive Na+-channels in the dorsal skin ofHirudo medicinalis. — Verh. dt. zool. Ges.84, 402–403.

    Google Scholar 

  • Drews, G., 1985. Elektrophysiologische und biochemische Untersuchungen zur osmoregulatorischen Fähigkeit und zur Salzaufnahme über das Kiemenepithel vonUca tangeri (Eydoux, 1835). Diss., F. U. Berlin, 139 pp.

  • Drews, G. & Graszynski, K., 1987. The transepithelial potential difference in the gills of the fiddler crab,Uca tangeri: influence of some inhibitors. — J. comp. Physiol.157, 345–353.

    CAS  Google Scholar 

  • Erlij, D. & Ussing, H. H., 1978. Transport across amphibian skin. In: Membrane transport in biology. Ed. by G. Giebisch, D. C. Tosteson & H. H. Ussing. Springer, Berlin3, 178–208.

    Google Scholar 

  • Graszynski, K. & Bigalke, T., 1987. Osmoregulation and ion transport in the extremely euryhaline fiddler crabsUca pugilator andUca tangeri (Ocypodidae). — Zool. Beitr.30, 339–358.

    Google Scholar 

  • Greger, R., 1985. Ion transport in thick ascending limb of Henle's loop of mammalian nephron. —Physiol. Rev.65, 760–797.

    CAS  PubMed  Google Scholar 

  • Harvey, B. J. & Ehrenfeld, J., 1988. Epithelial pH and ion transport by proton pumps and exchangers. — Ciba Fdn Symp.139, 139–164.

    CAS  Google Scholar 

  • Klein, U., Löffelmann, G. & Wieczorek, H., 1991. The midgut as a model system for insect K+-transporting epithelia: immunocytochemical localization of a vacuolar-type H+ pump. — J. exp. Biol.161, 61–75.

    CAS  Google Scholar 

  • Larsen, E. H., 1988. NaCl transport in amphibian skin. — Adv. comp. environ. Physiol.1, 189–248.

    Google Scholar 

  • Lucu, C., 1990. Ionic regulatory mechanisms in crustacean gill epithelia. — Comp. Biochem. Physiol.97A, 297–306.

    CAS  Google Scholar 

  • Lucu, C. & Siebers, D., 1987. Linkage of Cl fluxes with ouabain sensitive Na/K exchange throughCarcinus gill epithelia. — Comp. Biochem. Physiol.87A, 807–811.

    Google Scholar 

  • Mantel, L. H. & Farmer, L. H., 1993. Osmotic and ionic regulation. In: The biology of crustacea. Ed. by D. E. Bliss. Acad. Press, New York5, 53–161.

    Google Scholar 

  • Onken, H., 1989. Elektrophysiologische Untersuchung zur transepithelialen Cl-Aufnahme über die posterioren Kiemen der WollhandkrabbeEriocheir sinensis: Von der Untersuchung ganzer Kiemen zur Zellpunktion. Diss., F.U. Berlin, 174 pp.

  • Onken, H. & Siebers, D., 1992, Voltage-clamp measurements on single split lamellae of posterior gills of the shore crabCarcinus maenas. — Mar. Biol.114, 385–390.

    Article  Google Scholar 

  • Onken, H., Graszynski, K. & Zeiske, W., 1991. Na+-independent, electrogenic Cl uptake across the posterior gills of the Chinese crab (Eriocheir sinensis): voltage-clamp and microeletrode studies. — J. comp. Physiol.161, 293–301.

    Google Scholar 

  • Pequeux, A. & Gilles, R., 1988. The transepithelial potential difference of isolated perfused gills of Chinese crabEriocheir sinensis acclimated to fresh water. — Comp. Biochem. Physiol.89A, 163–172.

    Google Scholar 

  • Pequeux, A., Gilles, R. & Marshall, W. S., 1988. NaCl transport in gills and related structures. —Adv. comp. environ. Physiol.1, 1–73.

    Google Scholar 

  • Putzenlechner, M., Onken, H., Klein, U. & Graszynski, K., 1992. Electrogenic Cl-uptake across the gill epithelium ofEriocheir sinensis: energized by a V-type proton-ATPase? — Verh. dt. zool. Ges.85 (1), 160.

    Google Scholar 

  • Riestenpatt, S., Onken, H. & Graszynski, K., 1992. The stimulation of electrogenic Na+ and Cl uptake across the epithelium of posterior gills ofEriocheir sinensis by theophylline. — Verh. dt. zool. Ges.85 (1), 161.

    Google Scholar 

  • Schwarz, H.-J., 1990. Elektrophysiologische Untersuchungen des transepithelialen Natrium-Transportes isolierter, halbierter Kiemenplättchen posteriorer Kiemen der WollhandkrabbeEriocheir sinensis und der WinkerkrabbeUca tangeri. Diss., F.U. Berlin, 136 pp.

  • Schwarz, H.-J. & Graszynski, K., 1989. Ion transport in crab gills: a new method using isolated half platelets ofEriocheir gills in an Ussing-type chamber. — Comp. Biochem. Physiol.92A, 601–604.

    Google Scholar 

  • Shetlar, R. E. & Towle, D. W., 1989. Electrogenic sodium-proton exchange in membrane vesicles from crab (Carcinus maenas) gill. — Am. J. Physiol.257, R924-R931.

    CAS  PubMed  Google Scholar 

  • Siebers, D., Winkler, A., Lucu, C., Thedens, G. & Weichart, D., 1985. Na-K-ATPase generates an active transport potential in the gills of the hyperregulating shore crabCarcinus maenas. — Mar. Biol.87, 185–192.

    Article  CAS  Google Scholar 

  • Siebers, D., Lucu, Č. & Winkler, A., 1987. Active influx of ions across gills of osmoregulating shore crabsCarcinus maenas. — Zool. Beitr.30, 315–338.

    Google Scholar 

  • Siebers, D., Böttcher, K., Petrausch, G. & Hamann, A., 1990. Effects of some chloride channel blockers on potential differences and ion fluxes in isolated perfused gills of shore crabsCarcinus maenas. — Comp. Biochem. Physiol.97A, 9–15.

    CAS  Google Scholar 

  • Smith, D. S. & Linton, J. R., 1971. Potentiometric evidence for the active transport of sodium and chloride across excised gills ofCallinectes sapidus. — Comp. Biochem. Physiol.39A, 367–378.

    Google Scholar 

  • Ussing, H. H. & Zerahn, K., 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. — Acta physiol. scand.23, 110–127.

    CAS  PubMed  Google Scholar 

  • Wieczorek, H., Putzenlechner, M., Zeiske, W. & Klein, U., 1991. A vacuolar-type proton pump energizes K+/H+ antiport in an animal plasma membrane. — J. biol. Chem.266, 15340–15347.

    CAS  PubMed  Google Scholar 

  • Zeiske, W., Onken, H., Schwarz, H.-J. & Graszynski, K., 1992. Invertebrate epithelial Na+ channels: amiloride-induced current-noise in crab gill. — Biochim. biophys. Acta1105, 245–252.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onken, H., Graszynski, K., Johannsen, A. et al. How to overcome osmotic stress? Marine crabs conquer freshwater. New insights from modern electrophysiology. Helgolander Meeresunters 49, 715–725 (1995). https://doi.org/10.1007/BF02368395

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368395

Keywords