Skip to main content
  • North Sea Research: Marine Ecophysiology, Parasite-Host Relationships
  • Published:

The carbonic anhydrase of the Chinese crabEriocheir sinensis: Effects of adaption from tap to salt water

Abstract

In the present investigation we studied the carbonic anhydrase (CA) in various tissues of Chinese crabEriocheir sinensis which were acclimated to different salinities (0, 10, 20, 30‰). We found only negligible CA activity in haemolymph, heart, hypodermis, antennal gland, leg muscle and digestive gland, irrespective of the acclimation medium. However, high amounts of CA activity were found in the gills. In the case of the posterior gills, a strong dependence on the acclimatization of the animals was demonstrated; the highest activities were found in those adapted to tap water. To investigate the cellular distribution of the CA in the posterior gills, the additional enzyme activities were measured in all fractions of a differential centrifugation of the gill homogenate: Na+/K+-ATP'ase (a marker for the plasmamembrane); lactate dehydrogenase (LDH; as marker for the cytosol); and succinate dehydrogenase (SDH; as marker for mitochondria). Independent of the acclimation salinity (0 or 36‰ salinity), we found about 70% of CA associated with the highest level of the Na+/K+-ATP'ase in the second 100 000 g pellet (membrane fraction), while only 15% were found in the cytosolic fractions (associated with highest levels of LDH). We conclude that the carbonic anhydrase of posterior gills of the Chinese crab is mainly membrane-bound. Furthermore, the activity of CA shows a strong dependence on the salinity of the water in which the crabs were kept.

Literature Cited

  • Böttcher, K., Siebers, D. & Becker, W., 1990a. Carbonic anhydrase in branchial tissues of osmoregulating shore crabs,Carcinus maenas (L.). — J. exp. Zool.255, 251–261.

    Article  Google Scholar 

  • Böttcher, K., Siebers, D. & Becker, W., 1990b. Localization of carbonic anhydrase in the gills ofCarcinus maenas. — Comp. Biochem. Physiol.96 B, 243–246.

    Google Scholar 

  • Böttcher, K., Siebers, D., Becker, W. & Petrausch, G., 1991. Physiological role of branchial carbonic anhydrase in the shore crabCarcinus maenas. — Mar. Biol.110, 337–342.

    Article  Google Scholar 

  • Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. — Analyt. Biochem.72, 248–254.

    CAS  PubMed  Google Scholar 

  • Brinkman R., 1933. The occurrence of carbonic anhydrase in lower marine animals. — J. Physiol., Lond.80, 171–173.

    Google Scholar 

  • Burnett, L. E. & McMahon, B. R., 1985. Facilitation of CO2 excretion by carbonic anhydrase located on the surface of the basal membrane of crab gill epithelium. — Respir. Physiol.62, 341–348.

    Article  CAS  PubMed  Google Scholar 

  • Cameron, J. N., 1979a. Excretion of CO2 in water breathing animals; a short review. — Mar. Biol. Lett.1, 3–13.

    CAS  Google Scholar 

  • Cameron, J. N., 1979b. Effects of inhibitors on ion fluxes, transgill potential and pH regulation in freshwater blue crabsCallinectes sapidus (Rathbun). — J. comp. Physiol.133, 219–225.

    CAS  Google Scholar 

  • Clarke, B. & Porteous J. W., 1964. Determination of succinic acid by an enzymic method. — Biochem. J.93, 21c-22c.

    Google Scholar 

  • Ehrenfeld, J., 1974. Aspects of ionic transport mechanisms in crayfishAstacus leptodactylus. — J. exp. Biol.61, 57–70.

    CAS  PubMed  Google Scholar 

  • Ferguson, J. K. W., Lewis, L. & Smith, J., 1937. The distribution of carbonic anhydrase in certain marine invertebrates. — J. cell comp. Physiol.10, 395–400.

    Article  CAS  Google Scholar 

  • Green, J. D. & Narahara, H. T., 1980. Assay of succinate dehydrogenase activity by the tetrazolium method: evaluation of an improved technique in skeletal muscle fractions. — J. Histochem. Cytochem.28, 408–412.

    CAS  PubMed  Google Scholar 

  • Henry, R. P. & Cameron, J. N., 1982. The distribution and partial characterization of carbonic anhydrase in selected aquatic and terrestrial decapode crustaceans. — J. exp. Zool.221, 309–321.

    Article  CAS  Google Scholar 

  • Henry, R. P. & Kormanik, G. A., 1985. Carbonic anhydrase activity and calcium deposition during the molt cycle of the blue crab,Callinectes sapidus. — J. crust. Biol.5, 234–241.

    CAS  Google Scholar 

  • Henry, R. P., 1987. Quaternary ammonium sulfanilamid. A membrane-impermeant carbonic anhydrase inhibitor. — Am. J. Physiol.252 (Reg. Integr. Comp. Physiol. 21), R959-R965.

    CAS  PubMed  Google Scholar 

  • Henry, R. P., 1988a. Subcellular distribution of carbonic anhydrase activity in the gills of the blue crab,Callinectes sapidus. — J. exp. Zool.245, 1–8.

    Article  CAS  Google Scholar 

  • Henry, R. P., 1988b. Multiple functions of carbonic anhydrase in the crustacean gill. — J. exp. Zool.248, 19–24.

    Article  CAS  Google Scholar 

  • Kosiol, B., Bigalke, T. & Graszynski, K., 1988. Purification and characterization of gill Na+/K+-ATP'ase in the freshwater crayfishOrconectes limosus Rafinesque. — Comp. Biochem. Physiol.89B, 171–177.

    CAS  Google Scholar 

  • Maren, T. H., 1967. Carbonic anhydrase: chemistry, physiology and inhibition. — Physiol. Rev.47, 595–781.

    CAS  PubMed  Google Scholar 

  • Meldrum, N. U. & Roughton, F. J. W., 1932. The CO2 catalyst present in blood. — J. Physiol., Lond.75, 15.

    CAS  Google Scholar 

  • Onken, H. & Graszynski, K., 1989. Active Cl absorption by the Chinese crab (Eriocheier sinensis) gill epithelium measured by transepithelial potential difference. — J. comp. Physiol.159B, 21.

    Google Scholar 

  • Onken, H., Graszynski, K. & Zeiske, W., 1991. Na+-independent, electrogenic Cl uptake across the posterior gills of the chinese crab (Eriocheir sinensis): voltage-clamp and microelectrode studies. — J. comp. Physiol.161B, 293.

    Google Scholar 

  • Onken, H. & Siebers, D., 1992. Voltage-clamp measurements on single split lamellae of posterior gills of the shore crabCarcinus maenas. — Mar. Biol.114, 385–390.

    Article  Google Scholar 

  • Onken, H., Graszynski, K., Johannsen, A., Putzenlechner, M., Riestenpatt, S., Schirmer, C., Siebers, D. & Zeiske, W., 1995. How to overcome osmotic stress? Marine crabs conquer freshwater. New insights from modern electrophysiology. — Helgoländer Meeresunters.49, 715–725.

    Google Scholar 

  • Pequeux, A. & Gilles, R., 1988. The transepithelial potential differrence of isolated perfused gills of the Chinese crabEriocheir sinensis acclimated to fresh water. — Comp. Biochem. Physiol.89A, 163–172.

    Google Scholar 

  • Scalera, V., Storelli, C., Storelli-Joss, Ch., Haase, W. & Murer, H., 1980. A simple and fast method for the isolation of basolateral plasma membranes from rat small-intestinal epithelial cells. —Biochem. J.180, 177.

    Google Scholar 

  • Sedmark, J. J. & Grossberg, S. E., 1977. A rapid, sensitive and versatile assay for protein using coomassie brilliant blue G250. — Analyt. Biochem.79, 544–552.

    Google Scholar 

  • Sobotka, H. & Kann, S., 1941. Carbonic anhydrase in fishes and invertebrates. — J. cell comp. Physiol.17, 341–348.

    Article  CAS  Google Scholar 

  • Towle, D. W. & Kays, W. T., 1986. Basolateral localization of Na+/K+ ATP'ase in gill epithelium of two osmoregulating crabs,Callinectes sapidus andCarcinus maenas. — J. exp. Zool.239, 311–318.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsowski, A., Putzenlechner, M., Böttcher, K. et al. The carbonic anhydrase of the Chinese crabEriocheir sinensis: Effects of adaption from tap to salt water. Helgolander Meeresunters 49, 727–735 (1995). https://doi.org/10.1007/BF02368396

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368396

Keywords