Skip to main content
  • Heavy-Metal Pollution
  • Published:

Accumulation, loss and molecular distribution of cadmium inMytilus edulis

Abstract

InMytilus edulis, accumulation and loss of Cd were analyzed under experimental conditions. Cd uptake by the whole soft body is linear, increasing significantly with increasing Cd concentrations in the uptake medium. Until 100 µg Cd l−1, neither limitation of uptake nor any saturation process can be observed. Loss of Cd, measured after transfer of experimentally contaminated mussels to natural sea water, is exponential; biological half lives vary between 14 and 29 days. Gills are the primary sites of Cd uptake from the water, whereas in mid-gut gland, kidney, and mantle the uptake is retarded during the first few days. The mid-gut gland not only bears the main body load of Cd, but also shows the highest Cd concentrations. Gel chromatographic studies of mid-gut gland proteins reveal that Cd is eluated over the whole molecular weight range. Three metallothionein-like proteins with molecular weights of 6,600, 13,200, and 21,000 Dalton could be established. However, they cannot be taken as effective detoxification proteins, because more than 50% of the accumulated metal is bound to high molecular weight proteins.

Literature cited

  • Friberg, L., Piscator, H., Nordberg, G. F. & Kjellström, T., 1976. Cadmium in the environment. CRC-Press, Cleveland, Ohio, 248 pp.

    Google Scholar 

  • George, S. G. & Coombs, T. L., 1977. The effects of chelating agents on the uptake and accumulation of cadmium byMytilus edulis. — Mar. Biol.39, 261–268.

    Article  CAS  Google Scholar 

  • Howard, A. G. & Nickless, G., 1977. Heavy metal complexation in polluted molluscs. I. Limpets (Patella vulgata andPatella intermedia). — Chem.- biol. Interact.16, 107–114.

    Article  CAS  PubMed  Google Scholar 

  • Janssen, H. H. & Scholz, N., 1979. Uptake and cellular distribution of cadmium inMytilus edulis. — Mar. Biol.55, 133–141.

    Article  CAS  Google Scholar 

  • Kägi, J. H. R. & Vallee, B. L., 1960. Metallothionein: a cadmium and zinc containing protein from equine renal cortex. — J. biol. Chem.235, 3460–3465.

    PubMed  Google Scholar 

  • Karbe, L., 1972. Marine Hydroiden als Testorganismen zur Prüfung der Toxizität von Abwasserstoffen. Die Wirkungen von Schwermetallen auf Kolonien vonEirene viridula. — Mar. Biol.12, 316–328.

    Article  CAS  Google Scholar 

  • Noel-Lambot, F., 1976. Distribution of cadmium, zinc, and copper in the musselMytilus edulis. Existence of cadmium-binding proteins similar to metallothionein. — Experientia32, 324–326.

    Article  CAS  Google Scholar 

  • Noel-Lambot, F., 1979. Cadmium accumulation correlated with increase in metallothionein concentration in the limpetPatella caerulea. In: Animals and environmental fitness. Reprints of abstracts. Ed. by R. Gilles. Pergamon Press, Oxford, 83–84.

    Google Scholar 

  • Noel-Lambot, F., Bouquegneau, J. M., Frankenne, F., & Disteche, A., 1978. Le role metallothioneines dans le stockage des métaux lourds chez les animaux marins. — Revue int. Océanogr. méd.44, 13–20.

    Google Scholar 

  • Olafson, R. W. & Thompson, J. A. J., 1974. Isolation of heavy metal binding proteins from marine vertebrates. — Mar. Biol.28, 83–86.

    Article  CAS  Google Scholar 

  • Overnell, J., Davidson, J. A. & Coombs, T. L., 1977. A cadmium binding glycoprotein from the liver of the plaice(Pleuronectes platessa). — Biochem. Soc. Trans.5, 267–269.

    CAS  PubMed  Google Scholar 

  • Phillips, D. J. H., 1977. The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments — a review. — Environ. Pollut.13, 281–317.

    Article  CAS  Google Scholar 

  • Probst, G. S., Bousquet, W. T. & Miya, T. S., 1977. Correlation of metallothionein concentrations with acute cadmium toxicity in the mouse. — Toxic. appl. Pharmac.39, 61–69.

    Article  CAS  Google Scholar 

  • Schulz-Baldes, M., 1974. Lead uptake from sea water and food, and lead loss in the common mussel,Mytilus edulis. — Mar. Biol.25, 177–193.

    Article  CAS  Google Scholar 

  • Squibb, K. S., Cousins, R. J., Silbon, B. L. & Levin, S., 1976. Liver and intestinal metallothionein: function in acute cadmium toxicity. — Exp. mol. Path.25, 163–171.

    Article  CAS  Google Scholar 

  • Tanaka, K., Sueda, K., Onosaka, S. & Okahara, K., 1975. Fate of109Cd-labelled metallothionein in rats. — Toxic. appl. Pharmac.33, 258–266.

    Article  CAS  Google Scholar 

  • Theede, H., Andersson, I. & Lehnberg, W., 1979a. Cadmium inMytilus edulis from German coastal waters. — Meeresforsch.27, 147–155.

    CAS  Google Scholar 

  • Theede, H., Scholz, N. & Fischer, H., 1979b. Temperature and salinity effects on the acute toxity of cadmium toLaomedea loveni (Hydrozoa). — Mar. Ecol. Prog. Ser.1, 13–19.

    CAS  Google Scholar 

  • Webb, M., 1975. Metallothionein and the toxicity of cadmium. In: Ecological toxicology research. Ed. by A. D. McIntyre & C. F. Mills. Plenum Press, New York, 177–186.

    Google Scholar 

  • Wolf, P. de, 1975. Mercury content of mussels from West European coasts. — Mar. Pollut. Bull.6, 61–63.

    Article  Google Scholar 

  • Wright, D. A., 1977. The effect of calcium on cadmium uptake by the shore crabCarcinus maenas. — J. exp. Biol.67, 163–173.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, N. Accumulation, loss and molecular distribution of cadmium inMytilus edulis . Helgolander Meeresunters 33, 68–78 (1980). https://doi.org/10.1007/BF02414736

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02414736

Keywords