Skip to main content
  • Published:

Habitat choice by juvenile cod (Gadus morhua L.) on sandy soft bottoms with different vegetation types

Abstract

Habitat choice by juvenile cod (Gadus morhua L.) on sandy bottoms with different vegetation types was studied in laboratory. The experiment was conducted day and night in flow-through tanks on two different size-classes of cod (7–13 and 17–28 cm TL). Four habitats, typical of shallow soft bottoms on the Swedish west coast:Fucus vesiculosus, Zostera marina, Cladophora sp. and bare sand, were set up pair-wise in six combinations. The main difference between habitats in this study was vegetation structure, since all parameters except vegetation type was considered equal for both sides of the experimental tanks and natural prey was eliminated. The results showed a difference in habitat utilization by juvenile cod between day (light) and night (dark). During day time the fishes showed a significant preference for vegetation, while nocturnally no significant choice of habitat was made. Both size-classes preferredFucus, considered the most complex habitat in this study, when this was available. The smaller size-class seemed to be able to utilize the other vegetation types as well, always preferring vegetation over sand. Larger juvenile cod, on the other hand, appeared to be restricted toFucus. This difference in habitat choice by the two size-classes might be due to a greater dependence on shelter from predation by the smaller juveniles, causing them to associate more strongly with vegetation. The larger juveniles avoidedCladophora, since they might have difficulties in entering the compact structure of this filamentous algae. Availability of vegetation at day time, as a predation refuge, as well as of open sandy areas for feeding during night, thus seems to be important for juvenile cod. It is concluded that eutrophication-induced changes in habitat structure, such as increased dominance by filamentous algae, could alter the availability of predation refuges and foraging habitats for juvenile cod.

Literature Cited

  • Adams, S. M., 1976. The ecology of eelgrass,Zostera marina (L), fish communities. I. Structural analysis.—J. exp. mar. Biol. Ecol.22, 269–291.

    Article  Google Scholar 

  • Baden, S. P., Loo, L-O., Pihl, L. & Rosenberg, R., 1990. Effects of eutrophication on benthic communities including fish: Swedish west coast.—Ambio19, 113–122.

    Google Scholar 

  • Baden, S. P. & Pihl, L., 1984. Abundance, biomass and production of mobile epibenthic fauna inZostera marina (L) meadows, western Sweden.—Ophelia23, 65–90.

    Google Scholar 

  • Bonsdorff, E., 1992. Drifting algae and zoobenthos—effects on settling and community structure.— Neth. J. Sea Res.30, 57–62.

    Article  Google Scholar 

  • Bonsdorff, E., Norkko, A. & Boström, C., 1995. Recruitment and population maintenance of the bivalveMacoma baltica (L.)—Factors effecting settling success and early survival on shallow sandy bottoms. In: Biology and ecology of shallow coastal waters. Ed. by A. Eleftheriou, A. D. Ansell & C. J. Smith. Olsen & Olsen, Fredensborg, 253–260.

    Google Scholar 

  • Breuer, G. & Schramm, W., 1988. Changes in macrovegetation of Kiel Bight (Western Baltic Sea) during the past 20 years.—Kieler Meeresforsch. (Sdrh)6, 241–255.

    Google Scholar 

  • Carr, M. H., 1989. Effects of macroalgae assemblages on the recruitment of temperate zone reef fishes.—J. exp. mar. Biol. Ecol.126, 59–76.

    Article  Google Scholar 

  • Carr, M. H., 1991. Habitat selection and recruitment of an assemblage of temperate zone reef fisher. —J. exp. mar. Biol. Ecol.146, 113–137.

    Article  Google Scholar 

  • Carr, M. H., 1994. Effects of macroalgal dynamics on recruitment of a temperate reef fish.—Ecology75, 1320–1333.

    Article  Google Scholar 

  • Clark, D. S. & Green, J. M., 1990. Activity patterns of juvenile Atlantic cod,Gadus morhua, in Conception Bay, Newfoundland, as determined by sonic telemetry.—Can. J. Zool.68, 1434–1442.

    Google Scholar 

  • Dionne, M. & Folt, C. L., 1991. An experimental analysis of macrophyte growth forms as fish foraging habitat.—Can. J. Fish aquat. Sci.48, 123–131.

    Google Scholar 

  • Elliott, M., O’Reilly, M. G. & Taylor, C. J. L., 1990. The Forth estuary: a nursery and overwintering area for North Sea fishes.—Hydrobiologia195, 89–103.

    Article  Google Scholar 

  • Gibson, R. N., 1994. Impact of habitat quality and quantity on the recruitment of juvenile flatfish.— Neth. J. Sea Res.32, 191–206.

    Article  Google Scholar 

  • Gibson, R. N., Ansell, A. D. & Robb, L., 1993. Seasonal and annual variations in abundance and species composition of fish and marocrustacean communities on a Scottish sandy beach.—Mar. Ecol. Prog. Ser.98, 89–105.

    Article  Google Scholar 

  • Gjøsæter, J., 1987a. Habitat selection of juvenile cod (Gadus morhua), whiting (Merlangus, merlangius) and some littoral fish in an aquarium.—Flødevigen Rapp. Ser.1, 17–26.

    Google Scholar 

  • Gjøsæter, J., 1987b. Habitat selection and inter year class interaction in young cod (Gadus morhua) in aquaria.—Flødevigen Rapp. Ser.1, 27–36.

    Google Scholar 

  • Gotceitas, V., 1990. Variation in plant stem density and its effects on foraging success of juvenile bluegill sunfish.—Environ. Biol. Fish27, 63–70.

    Article  Google Scholar 

  • Gotceitas, V. & Brown, J. A., 1993. Substrate selection by juvenile Atlantic cod (Gadus morhua): effects of predation risk.—Oecologia93, 31–37.

    Google Scholar 

  • Gotceitas, V. & Colgan, P., 1989. Predator foraging success and habitat complexity: quantitative test of the threshold hypothesis.—Oecologia80, 158–166.

    Google Scholar 

  • Gotceitas, V., Fraser, S. & Brown, J. A., 1995. Habitat use by juvenile Atlantic cod (Gadus morhua) in the presence of an actively foraging and non-foraging predator.—Mar. Biol.123, 421–430.

    Article  Google Scholar 

  • Hull, S. C., 1987. Macroalgal mats and species abundance: a field experiment.—Estuar. coast. Shelf Sci.25, 519–532.

    Article  Google Scholar 

  • Isaksson, I. & Pihl, L., 1992. Structural changes in benthic macrovegetation and associated epibenthic faunal communities.—Neth. J. Sea Res.30, 131–140.

    Article  Google Scholar 

  • Isaksson, I., Pihl, L. & Montfrans, J. van, 1994. Eutrophication-related changes in macrovegetation and foraging of young cod (Gadus morhua L): a mesocosm experiment.—J. exp. mar. Biol. Ecol.177, 203–217.

    Article  Google Scholar 

  • Jansson, B. O., Aneer, G. & Nellbring, S., 1985. Spatial and temporal distribution of the demersal fish fauna in a Baltic archipelago as estimated by SCUBA census.—Mar. Ecol. Prog. Ser.23, 31–43.

    Article  Google Scholar 

  • Keats, D. W., Steele, D. H. & South, G. R., 1987. The role of fleshy macroalgae in the ecology of juvenile cod (Gadus morhua) in inshore waters off eastern Newfoundland.—Can.J. Zool.65, 49–53.

    Google Scholar 

  • Kingsford, M. J., 1992. Drift algae and small fish in coastal waters of northeastern New Zealand.— Mar. Ecol. Prog. Ser.80, 41–55.

    Article  Google Scholar 

  • Lough, R. G., Valentine, P. C., Potter, D. C., Auditore, P. J., Bolz, G. R., Neilson, J.D. & Perry, R. I., 1989. Ecology and distribution of juvenile cod and haddock in relation to sediment type and bottom currents on eastern Georges, Bank.—Mar. Ecol. Prog. Ser.56, 1–12.

    Article  Google Scholar 

  • Menge, B. A. & Sutherland, J. P., 1987. Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment.—Am. Nat.130, 730–757.

    Article  Google Scholar 

  • Nixon, S. W., 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. —Ophelia41, 199–219.

    Google Scholar 

  • Norkko, A. & Bonsdorff, E., 1996. Rapid zoobenthic community responses to accumulations of drifting algae.—Mar. Ecol. Prog. Ser.131, 143–157.

    Article  Google Scholar 

  • Orth, R. J., Heck, K. L. & Montfrans, J. van, 1984. Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator-prey relationships.—Estuaries7, 339–350.

    Article  Google Scholar 

  • Pihl, L., 1982. Food intake of young cod and flounder in a shallow bay on the Swedish west coast.— Neth. J. Sea Res.15, 419–432.

    Article  Google Scholar 

  • Pihl, L. & Rosenberg, R., 1982. Production, abundance, and biomass of mobile epibenthic marine fauna in shallow waters, western Sweden.—J. exp. mar. Biol. Ecol.57, 273–301.

    Article  Google Scholar 

  • Pihl, L. & Ulmestrand, M., 1993. Migration pattern of juvenile cod (Gadus morhua) on the Swedish west coast.—ICES J. mar. Sci.50, 63–70.

    Article  Google Scholar 

  • Pihl, L., Wennhage, H. & Nilsson, S., 1994. Fish assemblage structure in relation to macrophytes and filamentous epiphytes in shallow non-tidal rocky- and soft-bottom habitats.—Environ. Biol. Fish.,39, 271–288.

    Article  Google Scholar 

  • Pihl, L., Isaksson, I., Wennhage, H. & Moksnes, P.-O., 1995. Recent increase of filamentous algae in shallow Swedish bays: effects on the community structure of epibenthic fauna and fish.—Neth. J. aquat. Ecol.29, 1–10.

    Article  Google Scholar 

  • Raffaelli, D., Hull, S. & Milne, H., 1989. Long-term changes in nutrients, weed mats and shorebirds in an estuarine system.—Cah. Biol. mar.30, 259–270.

    Google Scholar 

  • Raffaelli, D., Lima, D., Hull, S. & Pont, S., 1991. Interactions between the amphipodCorophium volutator and macroalgal mats on estuarine mudflats.—J. mar. biol. Ass. U. K.71, 899–908.

    Article  Google Scholar 

  • Reise, K., 1983. Sewage, green algal mats anchored by lugworms, and the effects on Turbellaria and small polychaeta.—Helgoländer Meeresunters36, 151–162.

    Article  Google Scholar 

  • Reise, K. & Siebert, I., 1994. Mass occurrence of green algae in the German Wadden Sea.—Dt. hydrogr. Z. (Suppl.)1, 171–180.

    Google Scholar 

  • Reise, K., Herre, E. & Sturm, M., 1989. Historical changes in the benthos of the Wadden Sea around the island of Sylt in the North Sea.—Helgoländer Meeresunters.43, 417–433.

    Article  Google Scholar 

  • Rosenberg, R., 1985. Eutrophication—the future marine coastal nuisance?—Mar. Pollut. Bull.16, 227–231.

    Article  CAS  Google Scholar 

  • Rosenberg, R., Elmgren, R., Fleischer, S., Jonsson, P., Persson, G. & Dahlin, H., 1990. Marine eutrophication case studies in Sweden.—Ambio19, 102–108.

    Google Scholar 

  • Sogard, S. M., 1992. Variability in growth rates of juvenile fishes in different estuarine habitats.— Mar. Ecol. Prog. Ser.85, 35–53.

    Article  Google Scholar 

  • Sogard, S. M. & Able, K. W., 1991. A comparison of eelgrass, sea lettuce macroalgae, and marsh creeks as habitats for epibenthic fishes, and decapods.—Estuar. coast. Shelf Sci.33, 501–519.

    Article  Google Scholar 

  • Wheeler, A., 1980. Fish-algal relations in temperate waters. In: The shore environment. Ed. by J. H. Price, D. E. G. Irvine & W. F. Farnham. Acad. Press. London, 677–698.

    Google Scholar 

  • Zijlstra, J. J., 1972. On the importance of the Wadden Sea as a nursery area in relation to the conservation of the southern North Sea fishery resources.—Symp. zool. Soc. Lond.29, 233–258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borg, Å., Pihl, L. & Wennhage, H. Habitat choice by juvenile cod (Gadus morhua L.) on sandy soft bottoms with different vegetation types. Helgoländer Meeresunters. 51, 197–212 (1997). https://doi.org/10.1007/BF02908708

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02908708

Keywords