Skip to main content
  • Published:

Temporal variations in microbenthic metabolism and inorganic nitrogen fluxes in sandy and muddy sediments of a tidally dominated bay in the northern Wadden Sea

Abstract

Factors controlling seasonal variations in benthic metabolism (O2 flux) and dissolved inorganic nitrogen (DIN) fluxes were examined during a 12–14 month period at three intertidal Wadden Sea stations. Since the flux measurements were made as small-scale laboratory core incubations, the results are primarily related to the microbenthic community (microalgae, bacteria, micro-, meio- and small macrofauna) and cannot be considered representative of the total benthic community in the Wadden Sea. Furthermore, it has to be emphasized that light intensity during day-time simulations were constant and saturating at all times. Benthic primary production and oxygen uptake appeared to be temperature dependent with a ‘seasonal Q10’ of 1.7–1.8 and 2.7–4.3, respectively. Inundation had no effect on oxygen fluxes as evidenced by similar sediment respiration with and without water cover. A stronger temperature dependence of primary production in muddy than in sandy sediment indicated that the overall control in the latter may be complex due to factors like macrofaunal grazing and nutrient availability. Benthic respiration may not be controlled by temperature alone, as sedimentary organic matter content correlated significantly with both temperature and benthic respiration. Annual gross primary production in high intertidal sandy sediment was 10 and 50% higher than in low intertidal sandy and muddy sediments, respectively. Since annual benthic community respiration was 2 times higher in muddy than sandy sediments, the annual net primary production was about 0 in the former and 17–19 mol C m−2 yr−1 in the latter. However, heterotrophic contribution by larger faunal components as well as removal of organic carbon by waves and tidal currents, which are not included here, may balance the budget at the sandy stations. There was no or only weak relationships between (light and dark) DIN exchange and factors like temperature, sedimentary organic content, and oxygen fluxes. Factors related to nutrient fluxes, such as denitrification and nutrient concentration in the overlying water, may have hampered any such relationships. In fact, DIN fluxes at all three stations appeared to be strongly controlled by DIN concentrations in the overlying water. On an annual basis, the sediment appeared to be a net sink for DIN.

Literature Cited

  • Admiraal, W. & Peletier, H., 1980. Influence of temperature and light on the growth rate of cultures and natural populations of intertidal diatoms.—Mar. Ecol. Prog. Ser.2, 35–43.

    Article  Google Scholar 

  • Andersen, F. Ø. & Helder, W., 1987. Comparison of oxygen microgradients, oxygen flux rates and electron transport system activity in coastal marine sediments.—Mar. Ecol. Prog. Ser.37, 259–264.

    Article  Google Scholar 

  • Andersen, F. Ø. & Kristensen, E., 1988. The influence of macrofauna on estuarine benthic community metabolism: a microcosm study.—Mar. Biol.99, 591–603.

    Article  CAS  Google Scholar 

  • Armstrong, F. A., Stearns, C. R. & Strickland, J. D. H., 1967. The measurement of upwelling and subsequent biological processes by means of the Technicon Auto-analyzer and associated equipment. —Deep-Sea Res.14, 381–389.

    CAS  Google Scholar 

  • Asmus, R., 1986. Nutrient flux in short-term enclosures of intertidal sand communities.—Ophelia26, 1–18.

    Google Scholar 

  • Asmus, H. & Asmus, R., 1985. The importance of grazing food chain for energy flow and production in three intertidal sand bottom communities of the northern Wadden Sea.—Helgoländer Meeresunters.39, 273–301.

    Article  Google Scholar 

  • Asmus, R. & Asmus, H., 1996. Bedeutung der Organismengemeinschaften für den bentho-pelagischen Stoffaustausch. In: SWAP—Sylter Wattenmeer Austauschprozesse—Projektsynthese. Boysen, Tönning, 213–251.

    Google Scholar 

  • Austen, I., 1994. The surficial sediments of Königshafen—variations over the past 50 years.—Helgoländer Meeresunters.48, 163–171.

    Article  Google Scholar 

  • Backhaus, J., Hartke, D., Hübner, U., Lohse, H. & Müller, A., 1996. Hydrographie und Klima im Lister Tidebecken. In: SWAP—Sylter Wattenmeer Austauschprozesse—Projektsynthese. Boysen, Tönning, 32–45.

    Google Scholar 

  • Bayerl, K., Austen, I., Köster, R., Pejrup, M. & Witte, G., 1996. Dynamik der Sedimente im Lister Tidebecken. In: SWAP—Sylter Wattenmeer Austauschprozesse—Projektsynthese. Boysen, Tönning, 103–131.

    Google Scholar 

  • Bodenbender, J. & Papen, H., 1996. Bedeutung gasförmiger Komponenten an den Grenzflächen Sediment/Atmosphäre und Wasser/Atmosphäre. In: SWAP—Sylter Wattenmeer Austauschprozesse—Projektsynthese. Boysen, Tönning, 252–278.

    Google Scholar 

  • Boudreau, B. P., 1987. A steady-state diagenetic model for dissolved carbonate species and pH in the porewaters of oxic and suboxic sediments.—Geochim. Cosmochim. Acta51, 1985–1996.

    Article  CAS  Google Scholar 

  • Bower, C. E. & Holm-Hansen, T., 1980. A salicylate-hypochlorite method for determining ammonia in seawater.—Can. J. Fish. aquat. Sci.37, 794–798.

    Article  CAS  Google Scholar 

  • Cadée, G. C., 1976. Sediment reworking byArenicola marina on tidal flats in the Dutch Wadden Sea.—Neth. J. Sea Res.10, 440–460.

    Article  Google Scholar 

  • Cadée, G. C. & Hegeman, J., 1977. Distribution of primary production of the benthic microflora and accumulation of organic matter on a tidal flat area, Balgzand, Dutch Wadden Sea.—Neth. J. Sea Res.11, 24–41.

    Article  Google Scholar 

  • Camacho-Ibar, V.F. & Alvarez-Borrego, S., 1988. Nutrient concentrations in pore waters of intertidal sediments in a coastal lagoon: Patchiness and temporal variations.—Sci. total. Environ.75, 325–339.

    Article  CAS  Google Scholar 

  • Cammen, L. M., 1991. Annual bacterial production in relation to benthic microalgal production and sediment oxygen uptake in an intertidal sandflat and an intertidal mudflat.—Mar. Ecol. Prog. Ser.71, 13–25.

    Article  Google Scholar 

  • Colijn, F. & Buurt, G. van, 1975. Influence of light and temperature on the photosynthetic rate of marine benthic diatoms.—Mar. Biol.31, 209–214.

    Article  Google Scholar 

  • Colijn, F. & Jonge, V. N. de, 1984. Primary production of microphytobenthos in the Ems-Dollard estuary.—Mar. Ecol. Prog. Ser.14, 185–196.

    Article  Google Scholar 

  • Connor, M. S., Teal, J. M. & Valiela, I., 1982. The effect of feeding by mud snails,Ilyanassa obsoleta (Say), on the structure and metabolism of a laboratory benthic algal community.—J. exp. mar. Biol. Ecol.65, 29–45.

    Article  CAS  Google Scholar 

  • Davis, M. W. & Lee, H., 1983. Recolonization of sediment-associated microalgae and effects of estuarine infauna on microalgal production.—Mar. Ecol. Prog. Ser.11, 227–232.

    Article  Google Scholar 

  • Davis, M. W. & McIntire, C. D., 1983. Effects of physical gradients on the production dynamics of sediment-associated algae.—Mar. Ecol. Prog. Ser.13, 103–114.

    Article  CAS  Google Scholar 

  • Duyl, F. C. van & Kop, A. J., 1990. Seasonal patterns of bacterial production and biomass in intertidal sediments of the western Wadden Sea.—Mar. Ecol. Prog. Ser.59, 249–261.

    Article  Google Scholar 

  • Eppley, R. W., 1981. Relations between nutrient assimilation and growth in phytoplankton with a brief review of estimates of growth rate in the ocean.—Can. Bull. Fish. aquat. Sci.210, 251–263.

    Google Scholar 

  • Es, F. B. van, 1982. Community metabolism of intertidal flats in the Ems-Dollard estuary.—Mar. Biol.66, 95–108.

    Article  Google Scholar 

  • Gardner, L. R., 1973. The effect of hydrologic factors on the pore water chemistry of intertidal marsh sediments.—Southeast. Geol.15, 17–28.

    CAS  Google Scholar 

  • Grant, J., 1986. Sensitivity of benthic community respiration and primary production to changes in temperature and light.—Mar. Biol.90, 299–306.

    Article  Google Scholar 

  • Hall, P. O. J. & Aller, R. C., 1992. Rapid, small-volume flow-injection analysis for ΣCO2 and NH4 + in marine and freshwaters.—Limnol. Oceanogr.37, 1113–1119.

    CAS  Google Scholar 

  • Hall, S. J., Raffaelli, D. J., Basford, D. J. & Robertson, M. R., 1990. The importance of flatfish predation and disturbance on marine benthos: an experiment with dabLimanda limanda (L.).—J. exp. mar. Biol. Ecol.136, 65–76.

    Article  Google Scholar 

  • Hargrave, B. T., Prouse, N. J., Phillips, G. A. & Neame, P. A., 1983. Primary production and respiration in pelagic and benthic communities at two intertidal sites in the upper Bay of Fundy.—Can. J. Fish. aquat. Sci.40, 229–243.

    Google Scholar 

  • Henriksen, K., Jensen, A. & Rasmussen, M. B., 1984. Aspects of nitrogen and phosphorus mineralization and recycling in the northern part of the Danish Wadden Sea.—Publ. Ser. Neth. Inst. Sea Res.10, 51–69.

    Google Scholar 

  • Hickel, W., 1989. Inorganic micronutrients and the eutrophication in the Wadden Sea of Sylt (German Bight, North Sea). In: Proceedings of the 21st European Marine Biology Symposium. Ed. by R. Z. KÅ‚ekowski, E. Styczyñska-Jurewicz and L. Falkowski. Polish Academy of Sciences, WrocÅ‚aw, 309–318.

    Google Scholar 

  • Jensen, M. H., Lomstein, E. & Sørensen, J., 1990. Benthic NH4 + and NO3 − flux following sedimentation of a spring phytoplankton bloom in Aarhus Bight, Denmark.—Mar. Ecol. Prog. Ser.61, 87–96.

    Article  CAS  Google Scholar 

  • Jensen, K. M., Jensen, M. H. & Kristensen, E., 1996. Nitrification and denitrification in Wadden Sea sediments (Königshafen, Island of Sylt, Germany) as measured by nitrogen isotope pairing and isotope dilutioin.—Aquat. microb. Ecol.11, 181–191.

    Article  Google Scholar 

  • Jong, D. J. de & Jonge, V. N. de, 1995. Dynamics and distribution of microphytobenthic chlorophyll-a in the Western Scheldt estuary (SW Netherlands).—Hydrobiologia311, 21–30.

    Article  Google Scholar 

  • Jonge, V. N. de, 1980. Fluctuations in the organic carbon to chlorophylla ratios for estuarine benthic diatom populations.—Mar. Ecol. Prog. Ser.2, 345–353.

    Article  Google Scholar 

  • Jonge, V. N. de & Beusekom, J. E. E. van, 1995. Wind- and tide-induced resuspension of sediment and microphytobenthos from tidal flats in the Ems estuary.—Limnol. Oceanogr.40, 766–778.

    Google Scholar 

  • Jørgensen, B. B. & Sørensen, J., 1985. Seasonal cycles of O2, NO3 − and SO4 2− reduction in estuarine sediments: the significance of an NO3 − reduction maximum in spring.—Mar. Ecol. Prog. Ser.24, 65–74.

    Article  Google Scholar 

  • Kristensen, E., 1993. Seasonal variations in benthic community metabolism and nitrogen dynamics in a shallow, organic-poor Danish lagoon.—Estuar. Coast. Shelf Sci.36, 565–586.

    Article  CAS  Google Scholar 

  • Kristensen, E. & Hansen, K., 1995. Decay of plant detritus in organic-poor marine sediment: Production rates and stoichiometry of dissolved C and N compounds.—J. mar. Res.53, 675–702.

    Article  CAS  Google Scholar 

  • Kristensen, E., Devol, A. H., Ahmed, S. I. & Saleem, M., 1992. Preliminary study of benthic metabolism and sulfate reduction in a mangrove swamp of the Indus Delta, Pakistan.—Mar. Ecol. Prog. Ser.90, 287–297.

    Article  Google Scholar 

  • Kristensen, E., King, G. M., Holmer, M., Banta, G. T., Jensen, M. H., Hansen, K. & Bussarawit, N., 1994. Sulfate reduction, acetate turnover and carbon metabolism in sediments of the Ao Nam Bor mangrove, Phuket, Thailand.—Mar. Ecol. Prog. Ser.109, 245–255.

    Article  CAS  Google Scholar 

  • Moeslund, L., Thamdrup, B. & Jørgensen, B. B., 1994. Sulfur and iron cycling in a coastal sediment: Radiotracer studies and seasonal dynamics.—Biogeochemistry27, 129–152.

    CAS  Google Scholar 

  • Nowicki, B. L. & Nixon, S. W., 1985a. Benthic community metabolism in a coastal lagoon ecosystem. —Mar. Ecol. Prog. Ser.22, 21–30.

    Article  Google Scholar 

  • Nowicki, B. L. & Nixon, S. W., 1985b. Benthic nutrient remineralization in a coastal lagoon ecosystem. —Estuaries8, 182–190.

    Article  CAS  Google Scholar 

  • Parsons, T. R., Maita, Y. & Lalli, C. M., 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford, 173 pp.

    Google Scholar 

  • Parsons, T. R., Stephens, K. & Strickland, J. D. H., 1961. On the chemical composition of eleven species of marine phytoplankters.—J. Fish. Res. Bd Can.18, 1001–1016.

    CAS  Google Scholar 

  • Raffaelli, D. & Milne, H., 1987. An experimental investigation of the effects of shorebird and flatfish predation on estuarine invertebrates.—Estuar. coast. Shelf Sci.24, 1–13.

    Article  Google Scholar 

  • Rasmussen, M. B., Henriksen, K. & Jensen, A., 1983. Possible causes of temporal fluctuations in primary production of the microphytobenthos in the Danish Wadden Sea.—Mar. Biol.73, 109–114.

    Article  Google Scholar 

  • Reise, K., Herre, E. & Sturm, M., 1994. Biomass and abundance of macrofauna in intertidal sediments of Königshafen in the northern Wadden Sea.—Helgoländer Meeresunters.48, 201–215.

    Article  Google Scholar 

  • Rizzo, W. M., 1990. Nutrient exchanges between the water column and a subtidal benthic microalgal community.—Estuaries13, 219–226.

    Article  CAS  Google Scholar 

  • Rysgaard, S., Risgaard-Petersen, N., Nielsen, L. P. & Revsbech, N. P., 1993. Nitrification and denitrification in lake and estuarine sediments measured by the15N dilution technique and isotope pairing. —Appl. environ. Microbiol.59, 2093–2098.

    PubMed  CAS  Google Scholar 

  • Rysgaard, S., Christensen, P. B. & Nielsen, L. P., 1995. Seasonal variation in nitrification and denitrification in estuarine sediment colonized by benthic microalgae and bioturbating infauna.—Mar. Ecol. Prog. Ser.126, 111–121.

    Article  CAS  Google Scholar 

  • Sampou, P. & Oviatt, C. A., 1991. Seasonal patterns of sedimentary carbon and anaerobic respiration along a simulated eutrophication gradient.—Mar. Ecol. Prog. Ser.72, 271–282.

    Article  Google Scholar 

  • Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. —Limnol. Oceanogr.14, 799–801.

    Article  CAS  Google Scholar 

  • Sundbäck, K. & Graneli, W., 1988. Influence of microphytobenthos on the nutrient flux between sediment and water: a laboratory study.—Mar. Ecol. Prog. Ser.43, 63–69.

    Article  Google Scholar 

  • Sundbäck, K., Enoksson, V., Graneli, W. & Pettersson, K., 1991. Influence of sublittoral microphytobenthos on the oxygen and nutrient flux between sediment and water: a laboratory continuous-flow study.—Mar. Ecol. Prog. Ser.74, 263–279.

    Article  Google Scholar 

  • Therkildsen, M. S. & Lomstein, B. Aa., 1993. Seasonal variation in net benthic C-mineralization in a shallow estuary.—FEMS Microbiol. Ecol.12, 131–142.

    Article  CAS  Google Scholar 

  • Thrush, S. F., Pridmore, R. D., Hewitt, J. E. & Cummings, V. J., 1994. The importance of predators on a sandflat: interplay between seasonal changes in prey densities and predator effects.—Mar. Ecol. Prog. Ser.107, 211–222.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristensen, E., Jensen, M.H. & Jensen, K.M. Temporal variations in microbenthic metabolism and inorganic nitrogen fluxes in sandy and muddy sediments of a tidally dominated bay in the northern Wadden Sea. Helgoländer Meeresunters. 51, 295–320 (1997). https://doi.org/10.1007/BF02908717

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02908717

Keywords