Skip to main content
  • Published:

Relationship between bacteria, phytoplankton and heterotrophic nanoflagellates along the trophic gradient

Abstract

Bacterial and heterotrophic nanoflagellates (HNF) abundance, as well as bacterial production and chlorophylla levels, were measured at five sites extending from the coastal zone toward the open Adriatic in the period from March to October 1995. The investigated areas were grouped into trophic categories according to concentrations of chlorophylla. All the biotic-para-meters increased along the trophic gradient, leading to eutrophy, but they did not increase at the same rate. The bacterial biomass: phytoplankton biomass (BB: chla) ratio decreased from about 10 in the very oligotrophic area to 0.8 at the eutrophic site. In contrast, the bacterial abundance: HNF abundance ratio (B: HNF) increased from 1000 bacteria per 1 flagellate in the oligotrophic system to 1700 bacteria flagellate4 in the eutrophic area. Decreasing BB: chla and increasing B: HNF ratios along the trophic gradient might reflect the different structures of the microbial food web. Relationships between bacterial abundance and production, and chla and HNF showed that bacterial abundance along the trophic gradient was regulated by the interplay between nutrient supply and grazing pressure. But in the oligotrophic system, bacterial abundance was more closely related to bacterial production and chla than in the eutrophic system, suggesting stronger control of bacterial abundance by substrate supply. On the other hand, the coupling between bacteria and HNF, and uncoupling between bacterial abundance and production in the eutrophic system, showed that the importance of bacteriovory increased in richer systems.

Literature Cited

  • Azam, F., Fenchel, T., Field, K. G., Gray, K. S., Meyer-Reil, L. A. & Thigstad, F., 1983. The ecological role of water-column microbes in the sea.—Mar. Ecol. Prog. Ser.10, 257–263.

    Article  Google Scholar 

  • Beaver, J. R. & Crisman, T. L., 1982. The trophic response of ciliated protozoans in freshwater lakes.—Limnol. Oceanogr.27, 246–253.

    Google Scholar 

  • Berninger, U.-G. Finlay, B. J. & Kuuppo-Leinikki, P., 1991. Protozoan control of bacterial abundances in freshwater.—Limnol. Oceanogr.36, 139–147.

    Google Scholar 

  • Billen, G., Servais, P. & Becquevort, S., 1990. Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: bottom-up or top-down control?—Hydrobiologia207, 37–42.

    Article  Google Scholar 

  • Bird, D. F. & Kalff, J., 1984. Empirical relationship between bacterial abundance and chlorophyll concentration in fresh and marine waters.—Can. J. Fish. Aquat. Sci.41, 1015–1023.

    Article  Google Scholar 

  • Borsheim, K. Y. & Bratbak, G., 1987. Cell volume to cell carbon conversion factors for a bacteriovorousMonas sp. enriched from seawater.—Mar. Ecol. Prog. Ser.36, 171–175.

    Article  Google Scholar 

  • Bratbak, G. & Dundas, I., 1984. Bacterial dry matter content and biomass estimations.—Appl. Environ. Microbiol.48, 755–757.

    CAS  PubMed  Google Scholar 

  • Cho, B. C. & Azam, F., 1990. Biogeochemical significance of bacterial biomass in the ocean's euphotic zone.—Mar. Ecol. Prog. Ser.63, 253–259.

    Article  CAS  Google Scholar 

  • Cole, J. J., Findlay, S. & Pace, M. L., 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview.—Mar. Ecol. Prog. Ser.43, 1–10.

    Article  Google Scholar 

  • Currie, D. J., 1990. Large-scale variability and interactions among phytoplankton, bacterioplankton, and phosphorus.—Limnol. Oceanogr.35, 1437–1455.

    Google Scholar 

  • Dortch, Q. & Packard, T., 1989. Differences in biomass structure between oligotrophic and eutrophic marine ecosystems.—Deep Sea Res.36, 223–240.

    Article  CAS  Google Scholar 

  • Fuhrman, J. A., Ammerman, J. W. & Azam, F., 1980. Bacterioplankton in the coastal euphotic zone: distribution, activity and possible relationship with phytoplankton.—Mar. Biol.60, 201–207.

    Article  Google Scholar 

  • Fuhrman, J. A. & Azam, F., 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results.—Mar. Biol.66, 109–120.

    Article  Google Scholar 

  • Gačić, M., Dadić, V., Krstulović, N., Marasović, I., Morović, M., Pucher-Petkovič, T. & Sviličić, N., 1987. Near-shore transport process induced by the wind.—Estuar. coast. Shelf Sci.24, 35–46.

    Article  Google Scholar 

  • Gasol, J. M., 1994. A framework for the assessment of top-down vs bottom-up control of heterotrophic nanoflagellate abundance.—Mar. Ecol. Prog. Ser.113, 291–300.

    Article  Google Scholar 

  • Gasol, J. M. & Vaque, D., 1993. Lack of coupling between heterotrophic nanoflagellates and bacteria: A general phenomenon across aquatic systems?—Limnol. Oceanogr.38, 657–665.

    Article  Google Scholar 

  • Güde, H., 1986. Loss processes influencing the growth of planktonic bacterial population in Lake Constance.—J. Plankt. Res.8, 795–810.

    Article  Google Scholar 

  • Güde, H., 1989. The role of grazing on bacteria in plankton succession. In: Plankton ecology. Ed. by U. Sommer. Springer, New York, 337–364.

    Google Scholar 

  • Haas, L. W., 1982. Improved epifluorescence microscopy for observing planktonic micro-organisms. —Annls Inst. océanogr.58, 261–266.

    Google Scholar 

  • Hobbie, J. E., Daley, R. J. & Jasper, S., 1977. Use of Nucleopore filters for counting bacteria by fluorescence microscopy.—Appl. environ. Microbiol.33, 1225–1228.

    CAS  PubMed  Google Scholar 

  • Pace, M. L. & Cole, J. J., 1994. Comparative and experimental approaches to top-down and bottom-up regulation of bacteria.—Microb. Ecol.28, 181–193.

    Article  Google Scholar 

  • Riemann, B., Bjorsen, P. K., Newell, S. & Fallon, R., 1987. Calculation of cell production of coastal marine bacteria based on measured incorporation of (23H)thymidine.—Limnol. Oceanogr.32, 471–476.

    Article  CAS  Google Scholar 

  • Sanders, R. W., Caron, D. A. & Berninger, U. G., 1992. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison.—Mar. Ecol. Prog. Ser.86, 1–14.

    Article  Google Scholar 

  • Strickland, J. D. H. & Parsons, T. R., 1972. A practical handbook of seawater analysis.—Bull. Fish. Res. Bd Can167, 1–310.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krstulović, N., Šolić, M. & Marasović, I. Relationship between bacteria, phytoplankton and heterotrophic nanoflagellates along the trophic gradient. Helgoländer Meeresunters. 51, 433–443 (1998). https://doi.org/10.1007/BF02908725

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02908725

Keywords