Skip to main content
  • Published:

Influence of temperature on larval survival, development, and respiration inChasmagnathus granulata (Crustacea, Decapoda)

Abstract

Larvae of an estuarine grapsid crabChasmagnathus granulata Dana 1851, from temperate and subtropical regions of South America, were reared in seawater (32/%.) at five different constant temperatures (12, 15, 18, 21, 24 °C). Complete larval development from hatching (Zoea I) to metamorphosis (Crab I) occurred in a range from 15 to 24 °C. Highest survival (60% to the first juvenile stage) was observed at 18 °C, while all larvae reared at 12 °C died before metamorphosis. The duration of development (D) decreased with increasing temperature (T). This relationship is described for all larval stages as a power function (linear regressions after logarithmic transformation of bothD andT). The temperature-dependence of the instantaneous developmental rate (D −1) is compared among larval stages and temperatures using the Q10 coefficient (van't Hoff's equation). Through all four zoeal stages, this index tends to increase during development and to decrease with increasingT (comparing ranges 12–18, 15–21, 18–24 °C). In the Megalopa, low Q10 values were found in the range from 15 to 24 °C. In another series of experiments, larvae were reared at constant 18 °C, and their dry weight (W) and respiratory response to changes inT were measured in all successive stages during the intermoult period (stage C) of the moulting cycle. Both individual and weight-specific respiration (R, QO 2) increased exponentially with increasingT. At each temperature,R increased significantly during growth and development through successive larval stages. No significantly differentQO 2 values were found in the first three zoeal stages, while a significant decrease with increasingW occurred in the Zoea IV and Megalopa. As in the temperature-dependence ofD, the respiratory response to changes in temperature (Q10) depends on both the temperature range and the developmental stage, however, with different patterns. In the zoeal stages, the respiratory Q10 was minimum (1.7–2.2) at low temperatures (12–18 °C), but maximum (2.2–3.0) at 18–24 °C. The Megalopa, in contrast, showed a stronger metabolic response in the lower than in the upper temperature range (Q10=2.8 and 1.7, respectively). We interpret this pattern as an adaptation to a sequence of temperature conditions that should typically be encountered byC. granulata larvae during their ontogenetic migrations: hatching in and subsequent export from shallow estuarine lagoons, zoeal development in coastal marine waters, which are on average cooler, return in the Megalopa stage to warm lagoons. We thus propose that high metabolic sensitivity to changes in temperature may serve as a signal stimulating larval migration, so that the zoeae should tend to leave warm estuaries and lagoons, whereas the Megalopa should avoid remaining in the cooler marine waters and initiate its migration to wards shallow coastal lagoons.

Literature Cited

  • Anger, K., 1983. Moult cycle and morphogenesis inHyas araneus larvae (Decapoda, Majidae), reared in the laboratory.—Helgoländer Meeresunters.36, 285–302.

    Article  Google Scholar 

  • Anger, K., 1991. Developmental changes in the bioenergetics of decapod larvae.—Mem. Qd Mus.31, 289–308.

    Google Scholar 

  • Anger, K., 1995. The conquest of freshwater and land by marine crabs: adaptations in life-history patterns and larval bioenergetics.—J. exp. mar. Biol. Ecol.193, 119–145.

    Article  Google Scholar 

  • Anger, K. & Ismael, D., 1997. Growth and elemental composition (C, N, H) in larvae and early juveniles of a South American salt marsh crab,Chasmagnathus granulata (Decapoda: Grapsidae). —Mangroves and salt marshes1, 219–227.

    Article  Google Scholar 

  • Anger, K. & Jacobi, C. C., 1985. Respiration and growth ofHyas araneus L. larvae (Decapoda, Majidae) from hatching to metamorphosis.—J. Exp. Mar. Biol. Ecol.88, 257–270.

    Article  Google Scholar 

  • Anger, K., Spivak, E., Bas, C., Ismael, D. & Luppi, T., 1994. Hatching rhythms and dispersion of decapod crustacean larvae in a brackish coastal lagoon in Argentina.—Helgoländer Meeresunters.48, 445–466.

    Article  Google Scholar 

  • Boschi, E. E., 1964. Los Crustáceos Decápodos Brachyura del Litoral Bonaerense.—Boln Inst. Biol. mar., Mar del Plata6, 1–74.

    Google Scholar 

  • Boschi, E. E., Scelzo, M. A. & Goldstein, B., 1967. Desarrollo larval de dos especies de Crustáceos Decápodos en el laboratorio.Pachycheles haigae Rodrigues Da Costa (Porcellanidae) yChasmagnathus granulata Dana (Grapsidae).—Boln Inst. Biol. mar. Mar del Plata12, 1–46.

    Google Scholar 

  • Boschi, E. E., Fischbach, C. E. & Iorio, M. I., 1992. Catalago ilustrado de los crustáceos estomatópodos y decápodos marinos de Argentina.—Frente marit., Uruguay,10, 7–94.

    Google Scholar 

  • Brownlee, K. A., 1965. Statistical theory and methodology in science and engineering. Wiley, New York, 590 pp.

    Google Scholar 

  • Cronin, T. W. & Forward, R. B., 1986. Vertical migration cycles of crab larvae and their role in larval dispersal.—Bull. mar. Sci.39, 192–201.

    Google Scholar 

  • Day, R. & McEdward, L., 1984. Aspects of the physiology and ecology of pelagic larvae of marine benthic invertebrates. In: Marine plankton life cycle strategies. Ed. by K. A. Steidinger & L. M. Walker. CRC Press, Boca Raton, 94–120.

    Google Scholar 

  • DeVries, M. C., Tankersley, R. A., Forward, R. B., Kirby-Smith, W. W. & Luettich, R. A., 1994. Abundance of estuarine crab larvae is associated with tidal hydrologic variables.—Mar Biol.118, 403–413.

    Article  Google Scholar 

  • Forward, R. B., 1990. Behavioral responses of crustancean larvae to rates of temperature change.— Biol. Bull. mar. biol. Lab., Woods Hole178, 195–204.

    Article  Google Scholar 

  • Forward, R. B., De Vries, M. C., Rittschof, D., Frankel, D. A. Z., Bischoff, J. P., Fisher, C. M. & Welch, J. M., 1996. Effects of environmental cues on metamorphosis of the blue crabCall-inectes sapidus.—Mar. Ecol. Prog. Ser.131, 165–177.

    Article  Google Scholar 

  • Gebauer, P., Walter, I. & Anger, K., 1997. Effects of substratum and conspecific adults on the metamorphosis ofChasmagnathus granulata (Dana) (Decapoda: Grapsidae) megalopae.—J. exp. mar. Biol. Ecol. (in press).

  • Grasshoff, K., 1976. Methods of sea water analysis. Verl. Chemie, Weinheim, 317 pp.

    Google Scholar 

  • Hartnoll, R. R., 1988. Evolution, systematics and geographical distribution. In: Biology of the land crabs. Ed. by W. W. Burggren & B. R. McMahon. Cambridge University Press, Cambridge 6–54.

    Google Scholar 

  • Kinne, O., 1970. Temperature. Invertebrates. In: Marine ecology. Ed. by O. Kinne. Wiley, Chichester, 407–415.

    Google Scholar 

  • Kurmaly, K., Yule, A. B. & Jones, D. A., 1989. Effects of body size and temperature on the metabolic rate ofPenaeus monodon.—Mar. Biol.103, 25–30.

    Article  Google Scholar 

  • Little, K. T. & Epifanio, C. E., 1991. Mechanism for the re-invasion of an estuary by two species of brachyuran megalopae.—Mar. Ecol. Prog. Ser.68, 235–242.

    Article  Google Scholar 

  • Luppi, T. A., 1994. La coexistencia de dos especies de cangrejos en el ecosistema del “Cangrejal”. Estudio comparativo de los ciclos de vida. Thesis, Univ. Nacional de Mar del Plata, 54 pp.

  • McConaugha, J. R., 1992. Decapod larvae: dispersal, mortality, and ecology. A working hypothesis. —Am. Zool.32, 512–523.

    Google Scholar 

  • McConnaughey, R. A. & Sulkin, S. D., 1984. Measuring the effect of thermoclines on the vertical migration of larvae ofCallinectes sapidus (Brachyura: Portunidae) in the laboratory.—Mar. Biol.81, 139–145.

    Article  Google Scholar 

  • McNamara, J., Moreira, G. S. & Moreira, P. S., 1985. Thermal effects on metabolism in selected ontogenetic stages of the freshwater shrimpsMacrobrachium olfersii andMacrobrachium heterochirus (Decapoda, Palaemonidae).—Comp. Biochem. Physiol.80A, 187–190.

    Article  CAS  Google Scholar 

  • Moreira, G. S., McNamara, F. C., Hiroki, K. & Moreira, P. S., 1981. The effect of temperature on the respiratory metabolism of selected developmental stages ofEmerita brasiliensis Schmitt (Anomura, Hippidae).—Comp. Biochem. Physiol70A, 627–629.

    Article  Google Scholar 

  • Morgan, S. G., 1995. Life and death in the plankton: larval mortality and adaptation. In: Ecology of marine invertebrate larvae. Ed. by L. R. McEdward. CRC Press, Boca Raton, 279–321.

    Google Scholar 

  • Olivier, S., Escofet, A., Penchaszadeh, P. & Orensanz, J., 1972. Estudios ecológicos de la región estuarial de Mar Chiquita (Bs. As. Argentina). I. Las comunidades bentónicas.—An. Soc. cient. Arg.193, 237–262.

    Google Scholar 

  • Olmi, E. J., 1994. Vertical migration of blue crabCallinectes sapidus megalopae: implications for transport in estuaries.—Mar. Ecol. Prog. Ser.113, 39–54.

    Article  Google Scholar 

  • Precht, H., Christopherson, J., Hensel, H. & Larcher, W., 1973. Temperature and life. Springer, Berlin, 501 pp.

    Google Scholar 

  • Prosser, C. L., 1986. Temperature. In: Adaptational biology. Ed. by C. L. Prosser. Wiley, New York, 260–322.

    Google Scholar 

  • Ruffino, M. L., Telles, M. D. & D'Incao, F., 1994. Reproductive aspects ofChasmagnathus granulata Dana, 1851 (Decapoda, Grapsidae) in the Patos Lagoon Estuary, Brazil.—Nauplius2, 43–52.

    Google Scholar 

  • Santos, E. A., Baldisseroto, B., Bianchini, A., Colares, E. P., Nery, L. E. M. & Manzoni, G. C., 1987. Respiratory mechanisms and metabolic adaptations of an intertidal crab,Chasmagnathus granulata (Dana, 1851).—Comp Biochem. Physiol88A, 21–25.

    Article  Google Scholar 

  • SAS (Statistical Analysis System), 1989. Institute Inc., version 6, 1st Edition. Cary, NC, USA.

  • Schatzlein, F. C. & Costlow, J. D., 1978. Oxygen consumption of the larvae of the decapod crustaceans,Emerita talpoida (Say) andLibinia emarginata Leach.—Comp. Biochem. Physiol.61A, 441–450.

    Article  Google Scholar 

  • Sokal, R. R. & Rohlf, F. J., 1981. Biometry. Freeman, San Francisco, 859 pp.

    Google Scholar 

  • Spivak, E., Anger, K., Luppi, T., Bas, C. & Ismael, D., 1994. Distribution and habitat preferences of two grapsid crab species in Mar Chiquita Lagoon (Province of Buenos Aires, Argentina.—Helgoländer Meeresunters.48, 59–78.

    Article  Google Scholar 

  • Spivak, E. D., Anger, K. Bas, C. C., Luppi, T. A. & Ismael, D., 1998. Size structure, sex ratio, and breeding season in two intertidal grapsid crab species from Mar Chiquita Lagoon, Argentina.— Nerítica10 (in press).

  • Sulkin, S. D., 1990. Larval orientation mechanisms: the power of controlled experiments.—Ophelia32, 49–62.

    Google Scholar 

  • Vernberg, V. B., Moreira, G. S. & McNamara, J. C., 1981. The effect of temperature on the respiratory metabolism of the developmental stages ofPagurus criniticornis (Dana) (Anomura: Paguridae) —Mar. Biol.2, 1–9.

    Google Scholar 

  • Zeng, C. & Naylor, E., 1996a. Endogenous tidal rhythms of vertical migration in field collected zoea-1 larvae of the shore crabCarcinus maenas: implications for ebb tide offshore dispersal.— Mar. Ecol. Prog. Ser.132, 71–82.

    Article  Google Scholar 

  • Zeng, C. & Naylor, E., 1996b. Occurrence in coastal waters and endogenous tidal swimming rhythms of late megalopae of the shore crabCarcinus maenas: implications for onshore recruitment. —Mar. Ecol. Prog. Ser.136, 69–79.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ismael, D., Anger, K. & Moreira, G.S. Influence of temperature on larval survival, development, and respiration inChasmagnathus granulata (Crustacea, Decapoda). Helgoländer Meeresunters. 51, 463–475 (1998). https://doi.org/10.1007/BF02908727

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02908727

Keywords