Skip to main content
  • Published:

Effects of formaldehyde preservation on biometrical characters, biomass and biochemical composition ofAcartia clausi (Copepoda, Calanoida)

Abstract

The effects of formaldehyde preservation on biometrical characters, biomass and biochemical composition of the marine copepodAcartia clausi were studied using the relevant values of fresh unpreserved animals as reference.Acartia were collected in the southern parts of Saronicos Gulf in early May (16.5°C) and late June (21°C). Formalin was found to cause significant shrinkage of cephalothorax length, abdomen length and total length. The sex of individuals, as well as the temperature of seawater at the time of collection seem to influence dimensional losses. Females and animals collected at 16.5°C presented heavier losses. Dry weight is drastically reduced after formaldehyde preservation. Final losses are more severe for females and animals collected at 21°C. Two of the measured biochemical constituents, carbohydrates and neutral lipids, seem to be unaffected by formaldehyde. DNA and RNA although initially affected seem to be stabilized towards the end of the experimental period (30 days). The other biochemical parameters, viz proteins, total lipids and sugars, are profoundly affected by preservation.

Literature Cited

  • Bamstedt, U., 1983. RNA concentration in zooplankton: seasonal variation in boreal species.—Mar. Ecol. Prog. Ser.11, 291–297.

    Article  Google Scholar 

  • Bamstedt, U., 1986. Chemical composition and energy content. In: The biological chemistry of marine copepods. Ed. by E.D.S. Corner & S.C.M. O'Hara. Clarendon Press, Oxford, 1–58.

    Google Scholar 

  • Bamstedt, U. & Skjoldal H. R., 1980. RNA concentration in zooplankton: Relationship with size and growth.—Limnol. Oceanogr.25, 304–316.

    Google Scholar 

  • Beers, J.R., 1976. Determination of zooplankton biomass. In: Zooplankton fixation and preservation. Ed. by H.F. Steedman. Unesco Press, Paris, 35–84.

    Google Scholar 

  • Böttger, R. & Schnack D., 1986. On the effects of formaldehyde fixation on the dry weight of coppods. —Meeresforschung31, 141–152.

    Google Scholar 

  • Champalbert, G. & Kerabrun P., 1979. Influence du mode de conservation sur la composition chimique élémentaire dePontella mediterranea (Copepoda, Pontellidae).—Mar. Biol.51, 357–360.

    Article  Google Scholar 

  • Durbin, E. & Durbin A., 1978. Length and weight relationships ofAcartia clausi from Narragansett Bay, R.I.—Limnol. Oceanogr.23, 958–969.

    Article  Google Scholar 

  • Fudge, H., 1968. Biochemical analysis of preserved zooplankton.—Nature, Lond.219, 380–381.

    Article  CAS  Google Scholar 

  • Giguere, L.A., St-Pierre, J.F., Bernier, B., Vezina, A. & Rondeau, J.G., 1989. Can we estimate the true weight of zooplankton samples after chemical preservation?.—Can. J. Fish. aquat. Sci.46, 522–527.

    Google Scholar 

  • Hay, D.E., 1981. Effects of capture and fixation on gut contents and body size of Pacific herring larvae. —Rapp. P.-v. Réun. Cons. int. Explor. Mer178, 395–400.

    Google Scholar 

  • Hay, D.E., 1982. Fixation shrinkage of herring larvae: effects of salinity, formalin concentration and other factors.—Can. J. Fish. aquat. Sci.39, 1138–1143.

    Article  CAS  Google Scholar 

  • Holland, D.L. & Gabbott, P.A., 1971. A micro-analytical scheme for the determination of protein, carbohydrate, lipid and RNA levels in marine invertebrate larvae.—J. mar. biol. Ass. U.K.51, 659–668.

    CAS  Google Scholar 

  • Holland, D.L. & Hannant P.J., 1973. Addendum to a micro-analytical scheme for the biochemical analysis of marine invertebrate larvae.—J. mar. biol. Ass. U.K.53, 833–838.

    CAS  Google Scholar 

  • Hopkins, T.L., 1968. Carbon and nitrogen content of fresh and preservedNematoscelis difficilis, a euphausiid crustacean.—J. Cons. perm. int. Explor. Mer31, 300–304.

    Google Scholar 

  • Jones, D., 1976. Chemistry of fixation and preservation with aldehydes. In: Zooplankton fixation and preservation. Ed. by H.F. Steedman. Unesco Press, Paris, 155–171.

    Google Scholar 

  • La Barbera, M., 1989. Analysing body size as a factor in ecology and evolution.—A. Rev. Ecol. Syst.20, 97–127.

    Article  Google Scholar 

  • Landry, M.R., 1978. Population dynamics and production of a planktic marine copepodAcartia clausi, in a small temperate lagoon in San Juan Island, Washington.—Int. Revue ges. Hydrobiol.63, 77–119.

    Article  Google Scholar 

  • Lockwood, S.J. & Daly, C. de B., 1975. Further observations on the effects of preservation in 4% neutral formalin on the length and weight of O-group flatfish.—J. Cons. perm. int. Explor. Mer36, 170–175.

    Google Scholar 

  • Mazza, J., 1964. Premières observations sur les valeurs du poids sec chez quelques copépodes de Méditerranée.—Revue Trav. Inst. Pêch. marit.28, 293–301.

    Google Scholar 

  • Moraitou-Apostolopoulou, M., 1969. Variability of some morphoecological factors in six pelagic copepods from the Aegean Sea.—Mar. Biol.3, 1–13.

    Article  Google Scholar 

  • Moraitou-Apostolopoulou, M., 1971. Vertical distribution, diurnal and seasonal migration of copepods in Saronic Bay, Greece.—Mar. Biol.9, 92–99.

    Article  Google Scholar 

  • Moraitou-Apostolopoulou, M., 1974. An ecological approach to the systematic study of planktic copepods in a polluted area.—Boll. Pesca Piscic. Idrobiol.29, 29–47.

    Google Scholar 

  • Moraitou-Apostolopoulou, M., 1975. Seasonal variations in length of three copepods in Saronic Bay.—Boll. Pesca Piscic. Idrobiol.30, 93–101.

    Google Scholar 

  • Morris, R.J., 1972. The preservation of some oceanic animals for lipid analysis.—J. Fish Res. Bd Can.29, 1303–1307.

    CAS  Google Scholar 

  • Omori, M., 1978. Some factors affecting dry weight, organic weight and concentration of carbon and nitrogen in freshly prepared and in preserved zooplankton.—Int. Revue ges. Hydrobiol.63, 261–269.

    Article  Google Scholar 

  • Razouls, C. & Guiness, C., 1973. Variations annuelles quantitatives de deux espèces dominantes de copépodes planctoniquesCentropages typicus etTemora stylifera de la région de Banyuls. Cycles biologiques et estimation de la production. II Variations dimensionelles et mésure de croissance. —Cah. Biol. mar.14, 413–427.

    Google Scholar 

  • Schnack, D. & Rosenthal, H., 1978. Shrinkage of Pacific herring larvae due to formalin fixation and preservation.—Ber. dt. Wiss. Kommn Meeresforsch.26, 222–226.

    Google Scholar 

  • Sokal, R. & Rohlf, J., 1981. Biometry. Freeman, New York, 859 pp.

    Google Scholar 

  • Sutcliffe, W.H., 1970. Relationship between growth rate and ribonucleic acid concentration in some invertebrates.—J. Fish. Res. Bd Can.27, 606–609.

    CAS  Google Scholar 

  • Steedman, H.F. (Ed.), 1976. Zooplankton fixation and preservation. Unesco, Paris, 350 pp.

    Google Scholar 

  • Williams, R. & Robins, D.B., 1982. Effects of preservation on net weight, dry weight, nitrogen and carbon contents ofCalanus helgolandicus.—Mar. Biol.71, 271–281.

    Article  Google Scholar 

  • Vucetic, T., 1965. Quelques données sur la longueur des adultes deCalanus helgolandicus Claus, provenant de Veliko Jejero (Mljet).—Rapp. P.-v. Réun. Commn, int. Explor. scient. Mer Méditerr.18, 431–438.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapiris, K., Miliou, H. & Moraitou-Apostolopoulou, M. Effects of formaldehyde preservation on biometrical characters, biomass and biochemical composition ofAcartia clausi (Copepoda, Calanoida). Helgoländer Meeresunters. 51, 95–106 (1997). https://doi.org/10.1007/BF02908757

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02908757

Keywords