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ABSTRACT: Mathematical modeling of complex ecosystems is very difficult due to the very 
large number of components in the real ecosystem. Conceptual subdivision into interacting 
sub-systems is necessarily subjective and is made in view of explaining a particular aspect of 
the reality. In this paper, the North Sea planktonic ecosystem is reduced to a rather simple 
mathematical model with the purpose of showing the possibility of a spontaneous spatial 
emergence of plankton patches by diffusive instability. Due to the dependence of diffusion 
coefficients on the differential diameters of phytoplankton and herbivorous zooplankton 
patches, respectively, the spatially homogeneous steady state is unstable for spatial pertur- 
bations with wavelengths belonging to a certain range of values. As a consequence, these per- 
turbations amplify leading to spatial heterogeneity. 

INTRODUCTION 

Mathematical modelling of complex ecosystems is very difficult due to the very 
large number of components in the real ecosystem. Conceptual subdivision of a real 
ecosystem into interacting sub-systems is necessarily subjective. Moreover, this sub- 
division is always made to attempt to explain a particular phenomenon. 

I will focus attention on the mathematical modelling of the mechanism of patches 
emergence~occurring in the marine planktonic ecosystem. A recent review on this field 
has been presented by Levin (1976). References dealing with some biological processes 
in the whole planktonic ecosystem are given by Dubois & Mayzaud (1976). 

The general problem dealing with non-homogenous spatial pattern is of great 
interest in many other fields. On the one hand, morphogenesis related to structural 
stability was studied by Thom (1972, 1974). On the other hand, morphogenesis in 
relation with diffusive instability was firstly developed by Turing (1952) and applied 
largely by others (e.g. Glansdorff & Prigogine, 1974). 

In this paper, some ideas about patchiness have been inspired by these theories; 
more details about model systems of ecological morphogenesis can be found in Dubois 
(1976b) and Dubois & Closset (1976). 
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RESULTS 

M o d e l l i n g  o f  e c o s y s t e m s  

An ecological system can be defined as a system for which a tlow of energy and 
matter from its environment is a necessary condition to the maintenance of its func- 
tionality. Contrary to classical physical systems which are described in the energy 
space, ecological systems must be described, not only in the energy-space, but also in 
the energy and matter flow-space. 

At the level of energy, a structural stability will be defined, while at the level of 
energy and matter flow, a functional stability will be studied. The flow-space will be 
the supplementary dimension for describing the logic of living systems, for the purpose 
of understanding their functionality. 

Emergence of structural and functional properties of ecological systems will be 
the consequence of exchanges of energy and matter between the components of a 
system and between the system and its environment. In "the real world, the dynamics of 
phenomena depends on such a large number of variables and parameters at all spatial 
and temporal scales that the observer is unable to obtain a global view of the reality. 
For describing, quantitatively, the evolution of an open system, the observer will build 
a mathematical model of energetic processes occurring in the system. 

For that purpose, the observer subdivides the system into a certain number of 
components. In these conditions, the mathematical model will only be a particular 
representation of the reality. Thus, necessarily, an uncertainty of the exact know- 
ledge of the real world will exist for the observer. 

From experimental data, the observer subdivides a system into interacting sub- 
systems. This subdivision process leads to a rather subjective understanding of the 
reality. The observer will then define emettors, receptors and communication channels 
of energy and matter inside the system and between the system and its environment. 

After this step, the observer will build a particular model with a purpose in his 
mind: the explanation of mechanisms dealing with the studied system. 

O n  m a t h e m a t i c a l  m o d e l l i n g  

From a very general point of view, let us consider a system of volume V enclosed 
by a surface of area A. If the concentration of any component i par unit volume at a 
point inside the system is denoted by ci, the local flow vector Ji may be defined by 

]i = ciVi (1) 

where Vi is the geometrical translation of the ith component represented by its veloc- 
ity at the given point. 

For characterizing the behavior of the flow, Gauss introduced the notion of diver- 
gence of the flow: 

~Ji(y) ~Ji(z) 3Ji(x) 3- + -  
div Ji ~ V .  Ji = 3x ~y 8z 
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where Ji(x), Ji(y) and Ji(z) are the projections of the flow Ji on the three spatial 
cartesian axis and x, y and z the spatial coordinates. 

The physical meaning of div Ji is the following: a positive divergence means that 
at the point under consideration there is a net outflow of the ith species, or, in more 
descriptive language, the point of positive divergence is a "source" of species i. On the 
other hand, a negative divergence indicates a net inflow of the ith species; the point 
under consideration is a "sink". At points where div Ji = o, there is neither accumu- 
lation nor removal of material. 

Gauss demonstrated that the integral of the divergence over the volume is equal to 
the total flow of the ith:species through the surface bounding the volume: 

SV V" JidV = J'A Ji" dA 
The concept of divergence is very useful in the consideration of local conservation 

laws at all points of a system. 
It can be shown that for non-conservative continuous systems, the local conser- 

vation law of ci is given by 
3ci 
~t = Ii -- V ' J i  (2) 

where Ii is the local expression for the transformation or formation of species i as a 
consequence of chemical, biological interactions with other species. The difficulty is to 
find the best mathematical formulation for both flow and interaction terms. 

M o d e l l i n g  t h e  m e c h a n i s m  o f  t h e  s p a t i a l  e m e r g e n c e  
o f  p l a n k t o n  p a t c h e s  

Let us consider the following sub-ecosystem which is subdivided into two compo- 
nents: the phytoplankton and the herbivorous zooplankton populations. This sub-eco- 
system is in interaction (feed-back) with its environment, i.e. the remaining ecosystem 
(nutrients, bacteria, non-living particulate matter, omnivorous, carnivorous, etc,) and 
the physical environment (seawater, light, etc.). 

The general mathematical model is written: 

~t = fi(NI)N1 - f,a(Ni)N1N~ + V" (K1VN1) (3) 

~N~ = _ fs(N2)N~ + f4(N1)N1N~ + V" (K2VN~) (4) 
St 

where Ni  and Ng represent the phytoplankton and the herbivorous zooplankton con- 
centrations, respectively; and Ks and Ks are the diffusivity coefficients of the phyto- 
plankton and herbivorous zooplankton inside a patch respectively. In this study hori- 
zontal variability will be taken into account. In comparing equations (2) to (4), one 
can see that the mathematical expression of the local flow vector Ji of population i is 
given by 

]i = -- KiVNi =--- -- Ki grad Ni (5) 
which depends on the gradient (grad.) of the concentration of the population (Ni) 
with a factor of proportionality given by the diffusion coefficient (Ki). 
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Interest is directed to the following spatially homogeneous steady state 

(~N1/3t = ~N-2/3t = 0) 

fa(Ns0) 
N~0 f4(N10) (6) 

fi(N~0) 
N20 = fg(N10) (7) 

which give the classical non-trivial spatially homogeneous steady state (e.g. Dubois, 
1976a) N10 = kJk4 and N~0 = ki/ks in the classical Lotka-Volterra prey-predator- 
model. 

In the next section, it will be shown mathematically that, under certain con- 
ditions, the spatially homogeneous steady state can be unstable for some well-defined 
spatial perturbations. This local instability is due to non-equal diffusivities K1 4 = Ks 
of the phytoplankton and herbivorous zooplankton populations, respectively, leading 
to the emergence of plankton patches with well-defined diameters ;~r 1 and ~2 satis- 
fying K1 = K(3251) and Ks = K(2%). 

The physical mechanism of the spatial emergence of plankton pat&es can be ex- 
plained as follows. 

Let me consider the spatially homogeneous steady state. The planktonic ecosystem 
will be stable locally if spatial heterogeneities created by random perturbations around 
the spatial homogeneous steady state regress with time. As shown elsewhere (Dubois, 
1975; Dubois & Adam, 1976), the phytoplankton behaves as an activator and the 
herbivorous zooplankton as an inhibitor in the creation of what we called an eco- 
logical prey-predator wave. For values of the wavelength of perturbations belonging 
to a certain range around a critical wavelength 2e (see the mathematical expression in 
section 4) these perturbations will amplify. Indeed, in the real ecosystem, the dif- 
fusivity of seawater is not constant but increases with the diameter 3~ of the seawater 
patch. If a~er some random perturbations, the spatial repartition of plankton has 
characteristic lengths given by 2cl and ~)'s for the phytoplankton and herbivorous zoo- 
plankton populations respectively, the damping effect for the phytoplankton spatial 
inhomogeneity will be smaller than for the herbivorous zooplankton. In these con- 
ditions, the activator (the phytoplankton) will posses a small damping effect and the 
inhibitor (the herbivorous zooplankton) will posses a great damping effect. And, for 
some conditions of non-linear ecological interactions between the activator and the 
inhibitor, due to the faster diffusion of the inhibitor, the activator will amplify its 
activating effect leading to the formation of a phytoplankton patch. With a certain 
time lag, an inhomogeneity will appear in the herbivorous zooplankton spatial re- 
partition and we will then assist to the spatial structuration of a plankton patch. 

The horizontal pattern of the patches repartition will be given by an hexagonal 
symmetry in ideal conditions, i.e. without environmental large disturbances like ad- 
vection currents. This hexagonal repartition is logic from the point of view of the 
optimization of the spatial occupancy. Moreover, patches can differ from each other in 
their species content: it should exist of a competitive exclusion principle between 
patches which then would play the role of planktonic niches. 
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M a t h e m a t i c a l  d e m o n s t r a t i o n  o f  t h e  d i f f u s i v e  
i n s t a b i l i t y  i n  t h e  p l a n k t o n i c  m o d e l  s y s t e m  

Let us now consider small perturbations nl and n2 around the homogeneous steady 
state (eqs. [6] and [7]) 

Nt = NIO -i- n I (8) 

N.2 = N~0 + n~ (9) 

substitution of eqs. (8) and (9) into 3 and 4 leads to, a~er linearization, 

3nl 
3t - allnl + a12n2 + K((~I)V~nl (10) 

3n~ 
~t - a21nl -}- aa2n2 + K(~32)V2n.2 (11) 

where diameters (which are estimated by the variances of the spatial distributions of 
populations) of phytoplankton and herbivorous zooplankton patches are fixed and 
given by ~1  and ~ 2  (this assumption is correct during the first phase of the patches 
emergence). The coefficients aij are given by 

all = fl0 - f~0N~ - f'~0N10N~ + f'10N10 (12) 

a~2 = f40N10 -- f30 -- f'80N20 (13) 

a12 = -- f20N10 (14) 

a~l = f40N20 + f'40N10N~0 (15) 

where fl0 = fl(N10), ~e0 = f~(N10), fz0 = f.~(N20), f40 = f 4 ( N 1 0 ) ,  and f'lo = 
(~fl/~N1)o, f'20 = (~f~/3N1)o, f'80 = (~fz/~N2)o and f'40 = (~f4/~N1)o. 

To know whether the homogeneous steady state is stable it is sufficient to study 
the behavior of solutions of equations (10) and (11) which have the form (Fourier's 
analysis) 

ni (x, y, t) = f i i  cos (k �9 r -]-, (J)) exp (ot) (i = 1, 2) (16) 

where fii, k, ~ and o are constants. Stability is assured if and only if all these solutions 
decay with time, i.e. if and only if o has a negative real part.  I t  will take place if and 
only if the two following conditions hold 

(all --  K ( ~ l ) k  2) + (a~e -- K(,~b2)k e) < 0 (17) 

(all --  K ( ~ l ) k  -~ (a~ -- K(,q),.2)k ~) -- alea21 < 0 (18) 

For having diffusive instability (Turing, 1952), perturbations of zero wavenumber 
are required to be stable (global stability of the ecosystem). For k = 0, eqs. (17) and 
(18) give necessary conditions for diffusive instability, 

aal + a~  < 0 (19) 

allay.2 -- alkali < 0 (20) 

Equations (17) is always verified for all positive values of k ~, meanwhile eq. (18) 
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can be violated for finite positive real values of k 2. The roots k 2 solutions of eq. (18) 
equal to zero, 

(all - -  K(~bl)k 2) (as - -  K(~s)k e) - -  alkali = 0 (21) 
are given by 

ks = ailK(,~b2) + amK(Q1) -+ g ( a l lK(~)  + a~2K(Qt)) ~ --4K((~I)K(~b~) (alla~--al~am) 
2K(~ 1)K(,~) (22) 

For values of k 2 between these two roots, eq. (21) is negative thus stability condition 
(18) is violated, 
with the conditions 

al lK(.~) + a~aK(~)t) > 0 (23) 
and 

(al~K(qh~) + a~K(q)l)) 2 > 4K(q)I)K(.~)2) (atla~a --ai~asl) (24) 

for having real and positive values of k 2. When equality occurs in the condition 24, we 
obtain a double root. In this case, only one wavenumber corresponding to a &itical 
wavelength ,tc is unstable 

2~r ] /  2K(~I)K(,~2) 
)1c-- kee -- 2;c allK(~a) + a~K(qSi) 

DISCUSSION 

I wanted to show that, even in a spatially homogeneous environment, sponta- 
neously the planktonic model system exhibits instabilities for spatial fluctuations be- 
longing to a certain range of wavelengths. 

The solution of the equations of my model system gives a spatial heterogeneity of 
plankton repartition as a consequence of fundamental mechanisms occurring in the real 
ecosystem. My approach to mathematical modelling involves the construction of a 
model system by selecting the main phenomena and by taking into account only well- 
known experimental facts. However, the modelling technique employed is different 
from most usual techniques presented thus far in the scientific literature. 

Some authors attempt to build a sophisticated mathematical model in adjusting 
the parameters with experimental curves. Others, knowing that the spatial repartition 
of plankton is heterogeneous, search for mathematical models which give solutions in 
the form of heterogeneity of plankton repartition, even if their equations do not reflect 
some well-known experimental results. 

Many models thus led to unrealistic conclusions about the mechanism of the real 
phenomenon. In fact, most sophisticated mathematical models can give practically any 
solutions by adjusting the parameters. The mathematical model of a particular mecha- 
nism must be the more simple one and compatible with available data: this technique 
can be called the dynamical reductionism. 

Our model of the emergence of plankton patches is the simpler model (2 com- 
ponents) which could be constructed in taking into account the less drastic constraint 
on the mathematical expression of the ecological interactions. 

Obviously, to obtain a more realistic model which could give quantitative solu- 
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tions closer to experimental data, it is necessary to sophisticate the model by taking 
into account more phenomena like (a) the horizontal distribution of nutrients which 
modify the growth of phytoplankton from point to point in the sea; (b) the upwelling 
effect which is open of great importance (in the North Sea, this effect can be neglec- 
ted); (c) the turbidity of seawater which will also modulate the spatial pattern in 
changing the extinction coefficient from point to point; (d) the light variation during 
the year; (e) seawater transport properties other than diffusion (e.g. convection, ad- 
vection); (f) the dynamics of bacteria, non-living particulate matter, omnivorous, car- 
nivorous, etc. 

However, it is simpler to sophisticate a simple model rather than to simplify a 
sophisticated one. If  a simple model is impossible to build for some reason, a sophisti- 
cated model is useless and will explain nothing, even if the solutions agree precisely 
(too much, perhaps!) with experimental curves. 
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