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ABSTRACT: For the calculation of steep water waves, a Lagrangian method is presented. This 
makes it easier to derive and understand the complicated non-linear structure of the equations of 
motion (EOM), for the behaviour of water surfaces. In addition, this formulation offers the possibility 
to model an EOM which describes water waves with deference to variation in depth. 

INTRODUCTION 

Water waves  with larger amplitudes,  both in deep and in shallow water, have  
relatively different properties in contrast to the wel l -known low-ampli tude sinoidal 

waves.  The propert ies of steep water  waves,  travell ing into shallower regions of the 

shore, may be of interest  for marine biology due to their impact  on, for example,  water  
flow turbulence,  sea bottom erosion, chemical  exchange  with the a tmosphere  or momen-  

tum and energy transfer. Presented in this paper  is a way of calculating their properties. 

The behaviour  of water  waves  could be calculated from hydrodynamics  if the exact  
way of l inearization of the basic equat ions were  known. This, however,  is the problem. 

Thus, various model  assumptions have  been  proposed and respect ive equat ions of 
motion set up. These  have,  however ,  a complicated mathemat ica l  structure. This made  it 

difficult to unders tand the basic propert ies in terms of the equat ion of motion (EOM). In 

addition, most solutions have been  ga ined  by l inearizing (and thus simplifying) the EOM. 
It turns out, however ,  that the larger  ampli tude waves  have non-l inear  properties, which 

are inadvertant ly not be ing  considered. 
We propose to start the derivation of an EOM by a Lagrangian function of the 

transverse surface field. The design of Lagrangians  is known to be suitable for the case of 
complicated and coupled motions in Abstract Quantum Field Theory. The advan tage  is 

that each field enters with addit ive kinetic and potential  terms. The coupling b e t w e e n  

different fields, as well  as the non-l inear  selfcoupling, enter  by relatively simple addit ive 
terms. This greatly helps the design of a Lagrangian  which is suited to a g iven set of 

phenomena .  
As an example,  assume a water  basin with the surface elevation, ~(z). Then  the 

Lagrangian has to h a v e  a kinetic term, ~ (~7~) 2, with the moment  of inertia, m, and a 

potential  (or mass term), (~)2, both of which serve an EOM for  the de te rmined  free or 

l inear waves.  If this surface Lagrangian  is mode l l ed  to have in addition h igher  order 

terms, such as (~)n, where  n = 3, 4, 5 . . . .  t hese  turn out to be responsible for self-conpling 

non-l inear  effects: One  of which is the well  s tudied solitary wave  or soh'ton. 
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Because of the higher  powers  of the Lagrangian terms, one sees immedia te ly  that 
these solitons can occur only if the ampli tudes  11 are sufficiently high. Otherwise ,  an 113 

term would be  small against  the terms of the free waves  and, thus, would not contribute 

to the resultant EOM and its final solution. Sometimes the soliton reg ime of the EOM is 

called "weak  non-l inear",  because  one still has solution waves,  however  with different 

properties. 
In the case of more than one field, as in the ment ioned surface waves  and now, in 

addition, a longitudinal  sound or other  longitudinal  disturbance X, the Lagrangian 

method has the advan tage  of easily coping with it, by just introducing the respect ive 
kinetic and potential  term for the new field plus a coupling term b e t w e e n  these two 

fields, by adding a product of the type 112 X. This procedure has proven its val idi ty in many 

fields of coupled motions, and could even  be applied to the coupling of ocean  sea quakes  

with the ocean surface waves,  known as "Tsunami".  

In this paper  we design and apply the Lagrangian method  to the fol lowing cases: (1) 
ocean waves  in deep  water  being coupled to themselves  and (2) surface waves  in shallow 

water  be ing  coupled to the depths of the water  column. We will set up the respect ive 

Lagrangian,  derive the result ing EOM and discuss the properties of the solutions in 

comparison to l inear waves. 

PROPERTIES OF SOLITARY WAVES 

Convent ional  low ampli tude s i n o i d a 1 water  surface waves  are known  to have  the 

following properties:  
�9 The ampli tude is i ndependen t  of its wave length ;  
�9 The velocity depends  on the wave l eng th  (shorter waves  travel more slowly). Wave 

packages  disperse, disassemble with time. 

In contrast, solitons demonstra te  the following properties: 
�9 The ampli tude depends  on the velocity (or other  parameters) of the w a v e  and vice 

versa; 
�9 No dispersion: a solitary wave  is stable in its form with time. 

Thus, a soliton is a local, stable but propagat ing  object. 
We demonstra te  Lhe advan tage  of the Lagrangian Method using applicat ions for 

both shallow- and deep-wate r  waves.  

SHALLOW WATER WAVES 

T h e  e q u a t i o n  of m o t i o n  

The equation of motion for shallow-water waves has been extensively discussed in the 
literature (Whitham, 1974; Ablowitz & Segur, 1981). Their complicated, intricate and non- 
linear structure is exemplified by the well studied Korteweg-de Vries equation. This is a 
differential equation for the wave amplitude, ~l, as a function of the water depth, ho, 
travelling along x with time, t. The constant, co, gives the coupling between the depth 
and 11; the strength of which is governed by the gravitational acceleration g, Co = ~gh~o. 
This equation holds only for constant water depth, ho = const. 
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~1 = 11osech 2 x - vt (1) 

These Korteweg-deVries solutions refer to one of the oldest cases of a soliton, with all 
its properties as ment ioned  above. Specifically, the velocity is given by: 

( 1 
V=Co I + ~  (2) 

That is, the higher the soliton, the faster it is. 
Although the KdV equat ion does give interest ing soliton solutions, the EOM, at least 

to us, is by no means  vivid. Thus, no feeling of confidence may be developed to design a 
respective EOM for more complicated cases, such as rapidly changing depths. 

T h e  L a g r a n g i a n  

For a l inear sinoidal wave, the Lagrangian,  for the surface amplitude, 9, has to have a 
kinetic and a "free" or so called "mass" term. It is: 

1 { ~ I  2 + 
L = ~ \~'x] ~ (3) 

The simplest non-trivial  Lagrangian needs  to have at least one additional term. It is 
an equat ion with a cubic term in q. This is: 

1 (31']/2 
L = ~ \~x] + (X2112 Jr- f~21] 3 (4) 

This leads, by the proper derivatives, directly to the non- l inear  Korteweg-deVries 
equat ion of motion. In contrast to its intricate mathematical  structure, the Lagrangian 
consists only of additive terms, where the cubic in 11 is known  to be responsible for soliton 
wave type solutions. 

DEEP-WATER WAVES 

T h e  L a g r a n g i a n  

Thus, we apply this method of constructing a Lagranglan and from there we 
calculate the respective equation of motion to the non -hnea r  Schr6dinger equat ion as 
well. The repective Lagrangian is: 

I {3~1~ 2 + 
L = ~ \~xx] (x31~2 q- ~3q4 (5) 

The biquadrat ic  term is known to be responsible for a "self-coupling" of waves. 
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G e n e r a l i z a t i o n  

While the Korteweg-deVries case is for coupling to the shallow water  at the sea- 
bottom, the non-hnear  Schr6dinger is valid for deep-water  self-coupling of surface 
waves. 

The general izat ion for s teep-water  waves for any water depths inc luding  shallow 
water may be impossible to find, starting directly from the equations of motion. For the 
Lagrangian  method, it is extremely easy. We just add the two non-hnea r  terms to the 
following formula: 

1 
L = ~ \ ~ x /  + ~n3 + 7~4 (6) 

The coefficients now need  to be desgned  so that the two limiting cases are included. 
c~ has to go continuously from c~2 to c~ 3 as a function of depth and for small ampli tudes 

to cq. From first principles they should be roughly equal. 
should be set up to depend  on the inverse of the depth. 

Finally, y has to be zero for shallow water. A suitable p lacement  may thus be 
a/(1 + exp('~-h~ with a coupling strength a and a coupling "width" b. 

At the moment,  we evaluate these parameters  to be optimally applicable to seawater  
waves travelling from deep to shallow water. 

EXAMPLES 

In Figures 1, 2 and 3 we show some example of specific calculations. To get the EOM 
from the Langrangian,  one needs to use the wel l -known Variational Principle and 
afterwards solve the differential equat ion (EOM). 

A deep water soliton solution is shown in Figure 1. It is just a group of three waves, 
locally concentrated in space in both surface directions. 

Travell ing into shallower water, the front- and  after-waves diminish to feed the main  
central wave. The wave length perpendicular  to the travelling direction increases (Fig. 2). 
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Fig. 1. Deep-water soliton 
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Fig. 2. Shallow-water soliton 
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Fig. 3. Calculation for two crossing shallow-water solitons 

In Figure 3 we give a special example  for the case of two crossing shallow water  

sohtons. This can be compared to the photograph from Ablowitz & Segur  (1981] which  
exhibits this case (Fig. 4). 

SUMMARY 

A n e w  method  has been  presented to design equat ions of motion for deep -wa te r  

waves  t ravel l ing in deep or shallow water.  Their  solutions give their properties,  n e e d e d  

as input to mar ine  biology scenarios both close to the sea 's  surface and in shal low water.  
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Fig. 4. Interaction of two shaIlow-water waves 
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