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ABSTRACT: The density of five major groups ot fouling organisms (bacteria, diatoms,
choanotlagellates, ciliates, macroorganisms) on seven artificial substrata with surtace tensions
between 19.0 and 64.5 mN m ~ was studied in the Gulf ot Thailand. Two series of test panels ot
the difterent substrata were immersed into the sea between 3 hours and 64 days (macrotauna 128
days). The results show that surface tension has a limited impact on the density of the organisms,
Only bacteria settled continuously in significantly lower numbers on materials within the mini-
mum bioadhesive range (20-25 mN m ') than on other substrata. Significant differences between
the substrata may disappear after long exposure, as in series 2 after 16 days. For diatoms and pro-
tozoa, a colonisation pattern similar to that of bacteria with a minimum of 20-25 mN m * was
detected atter several exposure intervals. However, it was never recorded 1n more than 3 expo-
sure intervals in a row. The colonisation pattern of macroorganisms could not be attributed to
substratum surface tension. An index, called “colonisation degree” is introduced to give a gen-
eral impression of the density of organisms on the materials tested. The colonisation degree did
not show any significant difference at any exposure interval. The present results clearly suggest
that substratum surface tension is easily overshadowed by other factors in colonisation processes
under natural conditions.

INTRODUCTION

Marine fouling is a widespread nuisance to marine technology. Surfaces exposed to
natural seawater are colonised by a large variety of organisms. The major groups are
bacteria, diatoms, protozoa, and macroorganisms. Toxic paints are the most widespread
antifouling devices, although they cause serious damage to the environment and aqua-
culture, particularly in enclosed coastal areas (Fischer et al., 1984; Cleary & Stebbing,
1987). Among others, substratum surface tension (Sl-unit: y = mN m'') has attracted
some interest as one potential non-toxic measure to prevent fouling. Substratum sur-
face tension describes the "energetic state” of a surface. It is a major surface property
that influences attachment strength of organisms. However, there is considerable
uncertainty on the relevance of surface tension on the colonisation density of all fouling
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groups under natural conditions. Several studies reported the existence of a minimum
bioadhesive range on surfaces between 20 and 25 mN m™ (Baier, 1973; Dexter, 1979;
Goupil et al., 1980; Characklis & Cooksey, 1983; Meyer et al., 1988; Rittle et al., 1990).
Dexter (1979) proposed a thermodynamic model which explains that adhesion in sea-
water is minimal between 20 and 25 mN m ' Other studies found that attachment
strength and colonisation density decreased with increasing surface tension (Eiben,
1976; Fletcher & Loeb, 1979; Absolom et al., 1983; Mihm et al., 1981; van Pelt et al.,,
1985; Rittschof & Costlow, 1989; Burchard et al., 1990; Roberts et al., 1991) or increased
with surface tension (Absolom et al., 1983; Becka & Loeb, 1984; Fletcher & Baier, 1984;
Crisp et al., 1985; Udhayakumar & Karande, 1986; Rittschof & Costlow, 1989; Roberts
et al., 1991; Becker, 1993). Some studies indicate that surface tension responses differ
from species to species. In some instances, densities of colonisers may even be inde-
pendent of surface tension (Absolom et al., 1983; Rittschof & Costlow, 1989; Roberts et
al., 1991). Absolom et al. (1983) suggested that different substratum responses depend
on whether surface tension of the organism (or its adhesives) is higher, lower, or equal
to the surface tension of the medium.

Most previous studies on the effects of surface tension on density of fouling organ-
isms are laboratory studies, short-term field studies (maximum 2 weeks), or focussed
only on selected species. Woodin {1986) reported that macrofauna larvae may show
opposite reactions to one environmental factor under laboratory and field conditions.
Once a material is exposed to the sea, its surface tension is modified by adsorption of
macromolecules and early colonisers (Baier et al., 1968; Loeb & Neihof, 1975; Goupil et
al., 1980). Although late colonisers may not meet the initial substratum surface tension,
it may exert an indirect effect on these colonisers. Composition and structure of
adsorbed molecular films may differ between the substrata. Mihm et al. (1981) demon-
strated that the presence of a microbial film on a surface altered substratum prefer-
ences of Bugula neritina (Bryozoa). A 64-day study by Becker & Wahl (1991) in the
Baltic Sed considered all major fouling groups under natural conditions. This study sug-
gests that microfouling (bacteria, diatoms, protozoa) may be affected by surface tension
according to Dexter's model {1979) during early exposure intervals but that effects may
disappear after long-term exposure. Results on macroorganisms yielded no clear
results, partly due to slow and sparse settlement. Only one material (Parafilm) within
the minimum range (20-25 mN m ') was investigated. However, that material was very
attractive to paraffin degrading bacteria, which may have overshadowed surface ten-
sion effects. Therefore, more and inert materials within the 20-25 mN m'' range should
be selected. Secondly, studies should be conducted in an area with strong fouling pres-
sure by all fouling groups. An efficient antifouling device in marine technology should
be effective under heavy fouling pressure over a long period.

The aims of the present study were:

* Does initial substratum surface tension have any implication on the density of the
major fouling groups under natural conditions?

¢ How long does initial substratum tension have an effect on the density of fouling
organisms?

¢ Are all fouling groups affected by initial surface tension in the same or in different
ways?
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MATERIAL AND METHODS

Selection of substrate and determination of surface tension

Seven artificial materials were used in the present study. Four types of fluorpoly-
mers were provided by Hoechst Co. {(Frankfurt, Germany), namely PTFE (polytetrafluo-
rethylene), PFA (a copolymer made from PTFE and perfluorcompounds), FEP (fluo-
rethylenepropylene), and ETFE (ethylenetetrafluorethylene). The other three materials
were HC (an acetalpolymer, Hoechst Co.), PC (polycarbonate, Richter Co., Kiel, Ger-
many) and glass. All subsirates were inert, transparent or white, and smooth. Substra-
tum surface tension was determined by contact angle measurements with bidistilled
water and analytical grade glycerin as described earlier (Becker & Wahl, 1991; Becker,
1993). Calculation of surface tension or surface free energy”® (v..) from contact angle
Jdata was made through the equation-of-state approach (Neumann et al., 1974, 1980).
Prior to contact angle measurements and immersion into the sea, test panels were
cleaned thoroughly by a method based on that of Busscher (1985).

Experimental design of colonisation experiments

Two panel sizes were exposed to monitor the colonisation by fouling organisms.
Microfouling (bacteria, diatoms, protozoa) were enumerated on 1-cm? panels which
were exposed between 3 hours and 64 days in the sea. The density of each microfoul-
ing group was counted on 3 replicate panels after cach exposure interval. All re-
plicate samples for one exposure interval were stuck on one white polyamide-plate
(15 cmx18 cm). They were randomly distributed at the same level with no gaps
between. 25-cm” panels were used to determine the density of macroorganisms. They
were exposed from 3 hours to 128 days. One panel of each material was vertically
arranged and fixed between two bars. Samples were immersed into the sea close to
Laem Than Beach (Chonburi Province, Gulf of Thailand) at a depth of 1.5 m at low
tide (4.5 m at high tide). They were attached to a rope between concrete poles and
hung perpendicular in the water. Two experimental series were started at the same
location (an illuminated position) on 08. 09. 91 and 30. 01. 92. Samples were collected
at random after 3 and 6 hours, and after 1, 2, 5, 8, 32, 64, and 128 days. Two replicates
per material were collected after each interval. Early substratum modification (3-96 h)
was recorded on test panels (3 replicates) which were immersed into the sea. Panels
were air dried (Yamato DS-62, 30 °C) and surface tension was determined as
described above.

* There are different concepts referring to surface tension. The present study uses the concept of
surface free energy at interfaces (Y,,. s = solid, v = vapor; see Neumann et al,, 1974) like Absolom
et al. (1983), Fletcher & Pringle (1985) and van Pelt et al. (1985). Another concept which will be of
some relevance in that study is the concept of critical surface tension (7., see Zisman, 1964). Criti-
cal surface tension is an empirically determined parameter that is related to the surface tree
energy of a substratum. Dexter (1979), Baier (1973}, Meyer et al. {1988), Goupil et al. (1980) use
the concept of critical surface tension. Nevertheless, both concepts may yield similar results
because the values of the two terms approximate if the substrate are apolar to some extent (Rabel,
1971).
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Enumeration of organisms

After collection, the samples were preserved in 4%-Formalin in artificial seawater
and rinsed with distilled water to remove unattached organisms. Fouling organisms
were counted on 3 replicates per exposure interval. Bacteria were stained with acridine
orange and counted in 20 randomly selected fields through an epifluorescence micro-
scope at 100x magnification. Diatoms and protozoa were stained with Alcian blue and
Ziehl Neelsens stain. Their density was determined through a light microscope by
counts in 15 randomly selected fields at 40x magnification. The densities of the
10 most abundant diatom genera were estimated semi-quantitatively; {a) dominant:
occurred in >75% of fields counted and was the most abundant genus in >50% of the
fields counted, (b) abundant: occurred in >75% of fields counted and was the most
abundant genus in <50%, of the fields counted, (c} regularly: occurred in 25% < x <
75% of the fields counted but was never the most abundant genus, (d) seldom:
occurred in <25% of the fields counted but was never the most abundant genus. Proto-
zoa were differentiated into choanoflagellates and ciliates. Ciliata were identified to
the genus level and each genus was counted individually. Macroorganisms were iden-
tified and counted through a stereomicroscope. Coverage of the test panels by
macroorganisms was determined by the dot method adopted from random sampling
systems (Nair et al.,, 1984). On a transparent plastic sheet, 5x5 cm* were marked with
minute black spots at intervals of 0.25 cm. This sheet was randomly placed on the pan-
els. The total number of dots covering the panel and the number of dots covering
colonisers were counted. This procedure was repeated 3 times.

Statistical analyses

Statistical analyses were carried out using CSS-Statistica {Statsoft Inc.) software
package. Data were log-transformed for ANOVA. A Tukey-HSD-test was employed for
post-hoc comparisons of mean densities of the fouling groups on the substrata. An
index called “colonisation degree” was used to get an estimate of the colonisation by
all groups of fouling organisms (bacteria, diatoms, protozoa, macroorganisms) in both
experimental series. The "colonisation degree” was calculated as follows: The highest
mean density of each fouling group found on one material was set as 100%. Densities
on the other materials were calculated accordingly in %-values. The average of the val-
ues for the 5 fouling groups (bacteria, diatoms, choanoflagellates, ciliates, macroorgan-
isms) yielded the "colonisation degree”.

RESULTS

Surface tension of materials

PTFE (19.0 mN m-') possesses the lowest surface tension while glass (64.5 mN m-!)
shows the highest surface tension of the substrata investigated. FEP (20.5 mN m-!) and
PFA (22.0 mN m™) are within the proposed minimum bioadhesive range (20-25 mN
m!). ETFE (25.5 mN m™'} is slightly above this range. Surface tensions of HC (30.0 mN
m™) and PC (33.5 mN m™) belong to the proposed bioadhesive range {30-40 mN m™)
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Fig. 1. Modification of initial substratum surface tension upon exposure to seawater

which otfers favorable thermodynamic conditions for attachment in the sea (Baier et al.,
1968; Dexter, 1979). Initial surface tension of glass declined rapidly upon immersion
(Figure 1). Surface tension of PC decreased initially but later increased with exposure
time. HC, PTFE, PFA, and ETFA showed increasing surface tension after exposure to
seawater but PFA and ETFE remained below 30 mN m- after 96 hours. Surface tension
of FEP remained fairly constant until 96 hours.

Colonisation of the substrata

None of the fouling groups investigated showed in- or decreasing densities with
increasing surface tension. A colonisation pattern according to the model by Dexter
(1979) could be found several times. However, a clear influence of surface tension on
the density of the fouling groups could only be confirmed for bacteria (Table 1, Figure
2a). Lowest numbers were usually found on FEP (20.5 mN m™), PFA (22.0 mN m™) or
ETFE (25.5 mN m™') except in series 2 after 6 hours and 64 days when glass was the
least densely colonised material. Significant differences (Tukey-HSD-test: p < 0.05)
between the substrata were observed until 64 days (series 1) and 8 days (series 2},
respectively. Significant differences between the substrata were always recorded
between at least one material within the 20-25 mN m ! range (FEP, PFA, ETFE) and
PTFE as well as HC or PC. These results support the model by Dexter (1979) for bacte-
ria although significant differences may disappear after longer exposure intervals as in
series 2. The observation that glass (64.5 mN m™') was often less densely colonised than
HC (30.0 mN m™') and PC (33.5 mN m™) complies with Dexter's model (1979). It pre-
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Fig. 2. Examples of colonisation patterns on the artificial matenals after selected exposure intervals:
(a) bacteria (series 1), (b) diatoms (series 2), {c) choanoflagellates (series 1), (d) ciliates (series 1)

dicts declining densities above 40 mN m ' for thermodynamic reasons. Figure 2a dis-
plays the colonisation pattern of bacteria after selected exposure interval in series 1.
However, bacteria remained the only group of fouling organisms which showed a
“stable” colonisation pattern over a long period. The results for diatoms and protozoa
suggest that surface tension may, to some extent, have an impact on the substratum
colonisation by these organisms, but it is easily overshadowed by other factors. A
colonisation pattern with lowest densities between 20 and 25 mN m™ was found for
diatoms in series 1 from 6 hours to 16 days, but significant differences (Tukey-HSD-test:
p < 0.05) were not continuously recorded (Table 2, Figure 2b). In the 2nd series, maxi-
mum and minimum densities were detected on different substrata from one exposure
interval to the next. The 10 most abundant genera were Achnanthes, Amphora, Coc-
coneis, Diploneis, Grammatophora, Licmophora, Navicula, Nitzschia, Pleurosigma, and
Synedra. However, according to the semiquantitative estimation of their abundance,
none of these genera showed a regular colonisation pattern which could be clearly
attributed to surface tension. Like diatoms, densities of choanoflagellates (Table 3, Fig-
ure 2c} and ciliates (Table 4, Figure 2d) could not be linked clearly to surface tension
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although lowest numbers of both groups occurred sometimes on one material within
the 20-25 mN m™' range. The pattern with significant differences between the substrata
did not occur over more than 2 exposure intervals except ciliates from 5 to 16 days in
series 1. The following genera could be identified; Vorticella, Zoothamnium, Epistylis,
Corthunia, Pyxicola, Folliculina, Vaginicola (Peritricha), Ephelota, and Acineta (Sucto-
ria). None of these genera showed regularly preferences towards particular substrata
that would have suggested there was a significant impact of surface tension on their
densities.

Among macroorganisms, 7 genera of algae (Erythrocladia sp., Ulvella sp., Chaeto-
morpha sp., Enteromorpha sp., Melobesia sp., Ceramium sp., Polysiphonia sp.) and 34
macrofauna species were detected. The most abundant macrofauna species were
Laomedea sp. (Hydrozoa: Campanulariidae), Pomatoleios kraussii (Polychaeta: Serpuli-
dae), Polydora normalis (Polychaeta: Spionidae), Balanus variegatus (Cirripedia: Bala-
nidae), and Corophium sp. (Amphipoda: Corophiidae). These species were present
after most of the exposure intervals and occurred in high numbers. Except for the colo-
nial hydrozoa which covered up to 48" of the panels, barnacles were the most abun-
dant species. B. variegatus reached densities of 205 specimen per 10 cm? {on HC: Series
1, 32 days), P kraussii 68/10 ecm-” (ETFE: Series 1, 64 days), Corophium sp. 82/10 ¢cm®
(ETFE: Series 2, 16 days), and Polydora normalis 83/10 cm- (PC: Series 2, 32 d). Other
common species were actinians (Gen. sp.), Sabellaria c.t. spinulosa (Polychaeta: Sabel-
laridae), Perna viridis (Mollusca: Mytilidae), Crussostrea c.f. commercialis (Mollusca:
Ostreidae). Their densities remained below 5 individuals per 10 cm?’. The density of
encrusting species (Porifera, Bryozoa, Ascidiacea) remained low until 32 days in both
series (cover: <10%). However, they occupied up to 100% of the available space
on some panels after 64 and 128 days. Coverage of test panels by macroorganisms
(Table 5, Figure 3) and colonisation patterns of individual species could not be
attributed to surface tension. Highest and lowest cover was recorded on a different sub-
stratum after almost each interval.
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Fig. 3. Colonisation pattern of macroorganisms in series 2
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The colonisation degree (Figure 4a-b) also reveals that surface tension is obviously
not important as a fouling control device. At carly exposure intervals (until 16 days), the
colonisation degree remained on substrata between 20 and 25 mN m ' much lower than
on the other materials. However, during initial periods of exposure the colonisation
degree is largely determined by bacteria, which fit Dexter's model at best. At early
stages, other groups, namely protozoa and macroorganisms, are either still lacking or
their densitiecs do not differ very much between the materials due to low densities on
the test panels. Significant differences (Tukey-HSD-test: p < 0.05) in the colonisation
degree between the materials were only found after 8 days of exposure.

DISCUSSION

Although several studies reported substratum surface tension as an important fac-
tor in substratum colonisation (e.g., Fletcher & Loeb, 1979; Dexter, 1979; Absolom et al.,
1983; Eiben, 1976; Hsieh & Timm, 1988; Mihm et al., 1981; Rittschof & Costlow, 1989;
Roberts et al., 1991; Lindner, 1992}, the present study suggests that surface tension has
a very limited impact on the density of fouling organisms under natural conditions.
None of the surface tensions tested offered unfavourable conditions for attachment,
strong enough to minimize surface colonisation by high detachment and low attach-
ment rates of touling organisms. Strong attachment to a surface enables organisms to
resist strong water action and predation (Gubbay, 1983; Witman & Suchanek, 1984;
Denny, 1988). In the sea, there are various substrata with different surface properties to
which organisms must adhere. Marine species obviously evolved mechanisms to pre-
vent dislodgement from various types of natural and, according to the present study,
from artificial substrata as well.
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Only bacterial colonisation patterns support the thermodynamic model by Dexter
(1979) to some extent. Dexter (1979) showed the existence of a minimum bioadhesive
range for bacteria on surfaces between 20 and 25 mN m"'. However, differences
between the materials may be levelled off by longer exposure intervals. None of the
other major groups of fouling organisms showed continuously a similar pattern over a
long period. No evidence was found that there is a linear relationship between surface
tension and density of organisms as predicted by Absolom et al. (1983) according to
laboratory studies.

Marshall (1973) described bacteria as “living colloidal particles”. That means bac-
terial adhesion is more governed by physical surface parameters of the cell envelope
and substratum surface than adhesion by other (larger) organisms. Strong adhesion
between surfaces occurs if adhesive and substratum have similar wettability (Wu,
1973). In the sea there are many strains of bacteria with different surface tensions
(Busscher et al.,, 1984; Fattom & Shilo, 1984; Fletcher & Pringle, 1985). Therefore, a
wide range of substratum surface tensions may be colonised by different strains of bac-
teria. Further, bacteria possess a variety of mechanisms to respond to different surface
conditions (Rutter, 1980; Pringle & Fletcher, 1983; Marshall, 1986; Van Loosdrecht et al.,
1989). Paul & Jeffrey (1985) and Van Loosdrecht et al. (1987) showed that one bacterial
strain may switch from hydrophobic to hydrophilic attachment mechanisms depending
on whether they settle on unpolar (low surface tension, v,,) or polar (high surface ten-
sion, v.) surfaces. Extracellular polymers have been widely described as bacterial
adhesives. These polymers are mostly composed of acidic polysaccharides (Fletcher &
Floodgate, 1973; Sutherland, 1980; Shea et al., 1991) which adhere more strongly to
polar surfaces. They also often contain proteins or lipids (Fletcher & Marshall, 1982;
Parker & Munn, 1984; Neu & Poralla, 1988; Abu et al., 1991} which may favor attach-
ment on hydrophobic surfaces. Some strains produce hydrophobic polysaccharides
(Christensen et al., 1985; Neu & Poralla, 1988). The variety of attachment mechanisms
enable one strain to attach to different kinds of surfaces. Becker {1996) demonstrated
that bacteria attached at early exposure intervals more strongly to PC (33.5 mN m™)
and glass (64.5 mN m ') than to materials within the 20-25 mN m ' range. However,
bacteria achieve similar attachment strength on each material with time. Thus, bacteria
adapt themselves to different surfaces and can overcome unfavorable thermodynamic
surface conditions. Therefore, bacterial colonisation fits Dexter’'s model (1979) very well
after short exposure intervals but differences may disappear. The fraction of very firmly
adhering bacteria may increase with time. Duddridge et al. (1982) showed that a cer-
tain fraction of Pseudomonas fluorescens resisted shear forces of 120 N m~ on Perspex-
plates although most of the cells were removed at 11 N m

Diatoms are also able to improve attachment strength with time on a wide range of
materials (Woods & Fletcher, 1991; Becker, 1996). Diatom glues are predominantly
composed of polysaccharides {Chamberlain, 1976; Daniel et al., 1980; Cooksey & Cook-
sey, 1986; Hoagland et al., 1993), but it has been shown that proteinous material is
involved in attachment processes as well (Webster et al., 1985). Like bacteria, diatoms
are able to sense different surface conditions (Wigglesworth-Cooksey & Cooksey,
1992). Little is known about the composition of adhesives of protozoa, but a complex
ultrastructure of stalks of sessile peritrichan ciliates and suctorians (Brown et al., 1984;
Vogelbein & Thune, 1988) indicates the existence of different components in their
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adhesives. Sulfur containing protein-polysaccharide-complexes have been detected in
the freshwater suctoria Toxophyra infusionum (Hascall & Rudzinska, 1970; Hascall,
1973). Therefore, protozoa may also overcome unfavorable thermodynamic surface
conditions by specific attachment mechanisms.

Several laboratory and short-term field studies detected considerable differences in
attachment strength of macroorganisms on different substrata, and that they prefer to
settle on surfaces which provide good adhesion (e.g. Eiben, 1976; Yule & Crisp, 1983;
Becka & Loeb, 1984; Brewer, 1984; Fletcher & Baier, 1984; Yule & Walker, 1984, 1985;
Crisp et al., 1985; Udhayakumar & Karande, 1986; Rittschof & Costlow, 1989; Roberts et
al., 1991; Becker, 1993). However, Maki et al. (1992) found no effect of surface tension
(of bacterial films) on barnacle settlement. Becker (1993) reported that the density of
one barnacle and one serpulid polychaete species was not affected by substratum sur-
face tension despite different attachment strength. In the present study, attachment
strength on each material was strong enough to support dense fouling populations. A
variety of other environmental factors (e.g., availability of space, nutrient supply, con-
specific attraction) were obviously much more important for substratum colonisation
than surface tension.

In general, highly wettable surfaces (e.q., glass) become less wettable quickly upon
exposure to natural waters, and less wettable surfaces (e.g., Teflon) become more wet-
table to some extent. Thus, the surface tensions on various surfaces should converge
due to early adsorption and colonisation processes (Baier, 1973; Goupil et al., 1980).
This study indicates that initial surface tension of some materials, particularly those
within the minimum bioadhesive range, remains within that range over several days.
Slow alteration of surface tension of FEP (20.5 mN m ') and PFA (22 mN m ) can be
explained by initially less compact or weaker adhering biofilms on material with the
minimum bioadhesive range than on other substrate (Baier et al., 1968; Baier, 1973) or
that molecular and bacterial films on the surfaces reflected properties of the underlying
surface (Roberts et al., 1991). Organisms may meet with initial substratum surface ten-
sion over a few days of exposure on some materials. However, except for bacteria to
some extent, neither direct effects at early intervals nor indirect effects at later expo-
sure intervals on colonisation could be recorded.

Another result of the present study is, that lower bacterial colonisation on substrata
between 20 and 25 mN m ! did not result in lower densities of late colonisers, namely
protozoa and macrofauna. Mixed microbial films like those in the present study exert
frequently positive effects on subsequent colonisers {e.g., Kirchman et al.,, 1982; Maki
et al., 1989, 1990:; Cooksey & Wigglesworth-Cooksey, 1995). If surface tension affects
the colonisation via the composition of the microbial film, the effect is either very small
or else bacteria and diatom densities and microbial film composition did not differ
enough between the materials.

Substratum surface tension is only one property among a variety of others which
influence surface colonisation under natural conditions. The present study showed that
its effect on the density of fouling organisms is smail. Bacteria are the sole group which
were affected to some extent. A recent paper by Clarkson & Evans (1995) also suggests
that low surface tension hardly prevents heavy fouling. Griffith (1985) reported some
success by applying a non-adhesive coating on a ship hull. Nevertheless, that ship had
to be cleaned every 6 months. Therefore, surface tension is of minor importance in foul-
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ing control unless new aspects are introduced. For example, Lindner (1992) reported
that extremely low surface tension (12 mN m™') offers very weak adhesion to barnacles
leading to low densities in field experiments. However, such surfaces are difficult to
prepare and the results have to be confirmed in future field studies.
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