
Abstract d13C and d15N measurements are still poorly

conducted in benthic invertebrate larvae. To assess the

d13C and d15N changes occurring after a dietary shift,

experiments were conducted on veliger larvae of

Crepidula fornicata fed with two cultured microalgae

(Isochrysis galbana and Pavlova lutheri) of known

isotopic composition, 13C-enriched and 15N-depleted

compared to the initial values of the larvae. Rapid

changes in larval d13C and d15N were observed after

the dietary shift, with an increase in d13C and a de-

crease in d15N. After 19 days of feeding, isotopic

equilibrium was still not reached, a period which is

close to the duration of the pelagic life of the larvae.

This implies that the isotopic composition measured in

field-collected larvae might only partly reflect actual

larval feeding but also the parental isotopic signature,

especially during the early developmental stages.

Isotopic measurements in marine invertebrate larvae

should thus be interpreted cautiously. In planktonic

food web investigations, the study of field-collected

larvae of different size/developmental stage may

reduce potential misinterpretations.
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Introduction

The use of natural stable isotope ratios of both car-

bon (d13C) and nitrogen (d15N) has improved our

understanding of food web structures and functioning

in marine coastal ecosystems (Peterson 1999). Most

isotopic studies deal with field-collected samples of

consumers and potential food sources. They thus

complement observations of feeding behaviour, gut

content analyses, fecal pellets observations and

growth studies. However, growing evidence indicates

that trophic step enrichment which occurs at each

trophic level may vary depending on (1) the effi-

ciency of assimilation of different dietary compo-

nents, (2) the food quality (e.g. C:N ratio), and (3)

the differential allocation of nutrients to specific tis-

sues (Gannes et al. 1997; Adams and Sterner 2000;

Post 2002; McCutchan et al. 2003; Yokoyama et al.

2005). Laboratory experiments are thus still needed

to assess the validity of the assumptions used to infer

food-web relationships (Gannes et al. 1997). In par-

ticular, such investigations are needed to determine

the time necessary to reach the new isotopic equi-

librium between a source and its consumer after a

dietary shift, which depends on the metabolic rate of

the consumer (Olive et al. 2003).

Experimental data are even more required when

dealing with early developmental stages as, for a given

species, isotopic fractionation may vary during onto-

genesis due to changes in metabolic rate (Hentschel

1998; Rossi et al. 2004). However, isotopic variations in

early developmental stages are still poorly docu-

mented, despite their role in ecosystem functioning.

This is especially true in marine benthic species with a

bentho-pelagic life cycle, for which only a few recent
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studies have dealt with larvae (Schwamborn et al. 1999,

2002; Rossi et al. 2004; Sommer and Sommer 2004).

Such lack of data is mostly related to practical limita-

tions as the need to get a sufficient amount of material

for isotopic analyses. To our knowledge, only one study

has reported results of feeding experiments, and that

with carnivorous decapod larvae fed Artemia (Sch-

wamborn et al. 2002), but data for molluscan veliger

larvae, which are a major component of the mero-

plankton, are still lacking.

In the present study, we report the results of feeding

experiments on veliger larvae of the slipper limpet

Crepidula fornicata fed phytoplankton, by using d13C

and d15N. Larvae of this species are easy to obtain as

females brood their embryos within ovigerous capsules

until the veliger stage, and are easy to culture in the

laboratory (Pechenik 1980; Pechenik and Lima 1984;

Marty et al. 2003). They are large at hatching (ca.

450 lm) and reach ca. 950 lm at settlement. In addi-

tion, C. fornicata is a key species which has become

invasive in numerous areas of Europe causing detri-

mental effects to these ecosystems (Blanchard 1997;

Thieltges et al. 2003). Its reproductive system and

dispersal abilities (both natural by larval dispersal and

human-mediated) are factors that might explain its

invasion success (Dupont et al. 2003; Viard et al. 2006).

In this context, the study of its larvae is of major

interest (Pechenik 1999).

Materials and methods

Adults of the prosobranch gastropod Crepidula forni-

cata (L.) were collected in the bay of Morlaix (48�40¢N,

3�53¢E) on 21 June 2002, by dredging on board of N/O

Mysis. Larvae released in the laboratory the day after

collection were placed in 0.45 lm-filtered seawater.

Larvae from several females were pooled but all had

been released on the same day (i.e. same develop-

mental stage). Larvae were transferred to three 1.5-l

plastic tanks at an initial concentration of 10 larvae ml-1

in 0.45 lm-filtered seawater. Oxygenation was achieved

with atmospheric air, filtered on 0.2-lm Millex-FG50

filters. Water was changed and larvae were fed every 2

or 3 days with either Isochrysis galbana T-ISO, Pavlova

lutheri, or both at a final concentration of 105 cells ml–1.

Larvae were first fed the day after release. Feeding

experiments were stopped after 19 days because (1)

larval numbers had decreased due to sampling and

mortality, and (2) metamorphosis had begun in a few

larvae. The feeding experiment with the mixed diet was

stopped already after 11 days due to high mortality.

The two algal strains used as food for C. fornicata

larvae, Isochrysis galbana strain T-ISO (later T-ISO)

(Prymnesiophyceae) and Pavlova lutheri strain PLY75

(later Pavlova) (Pavlophyceae), were obtained from

the Roscoff Culture Collection (RCC; http://www.

sb-roscoff.fr/Phyto/RCC/) with reference numbers

RCC179 and RCC180, respectively. Both strains were

cultured (non axenic) in K medium (Keller et al. 1987)

in 2-l flasks at room temperature and light. Cultures

were aerated by bubbling with atmospheric air, filtered

on 0.2-lm Millex-FG50 filters. Before collection for

larval feeding, algal concentrations were measured

using a Malassez cell in order to feed the larvae with the

adequate concentration. Carbon and nitrogen isotope

ratios of the algal cultures were measured at the

beginning of the experiment.

About 950 larvae were collected for stable isotope

analyses immediately after their release by the females.

A total of 170–300 larvae were further subsampled

from each culture tank 2 to 19 days after their release.

On day 2, two replicates were subsampled. Larvae

were collected by filtration on precombusted Whatman

GF/F glass fiber filters. The filters were then briefly

acidified with 0.1 N HCl in order to remove carbon-

ates, rinsed with Milli-Q water, freeze-dried and kept

at –20�C until analysis.

Carbon and nitrogen isotope ratios were determined

using a CHN analyser (ThermoFinnigan 1112 Series)

interfaced with a mass spectrometer (ThermoFinnigan

MAT Deltaplus) via a Conflow III open split interface.

Data are expressed in standard d-unit notation

dX = [(Rsample/Rreference)–1] · 103, where X = C (car-

bon) or N (nitrogen) and R = 13C/12C for carbon and
15N/14N for nitrogen. These values are reported rela-

tive to the Vienna Pee Dee Belemnite standard (PDB)

for carbon and to air N2 for nitrogen. A laboratory

working standard (Peptone) was run for every ten

samples. Average reproducibilities based on replicate

measurements, using the Peptone standard, for d13C

and d15N were less than ± 0.10&.

Results and discussion

About 170–300 veliger larvae (>400 lm), correspond-

ing to about 200 lg dry weight of organic material,

were needed for an accurate measure of d13C and d15N.

These values are close to those of other studies: ca. 200

polychaete and bivalve larvae (Sommer and Sommer

2004), 100–150 late-stage larvae (300–500 lm) of the

hydrothermal vent bivalve Bathymodiolus azoricus

(Trask and Van Dover 1999), 20–85 spionid polychaete
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larvae (Hentschel 1998), 20–30 zoeae and 5–10 mega-

lopae of decapods (Schwamborn et al. 2002).

Newly-hatched unfed Crepidula fornicata larvae had

isotopic values (d13C = –21.7&; d15N = 8.2&) in the

range of those typically encountered in marine inver-

tebrates feeding on phytoplankton (e.g. Riera et al.

1996). Although we did not measure the isotopic

composition of the females which incubated the larvae,

the value obtained for the veligers might reflect that of

parental tissues. During the first few days after the

dietary shift, substantial changes in larval d13C and

d15N were observed in all the treatments (Fig. 1). This

resulted in an increase in d13C and a decrease in d15N

towards the isotopic composition of the newly-offered

food (T-ISO, d13C = –16.8&, d15N = –1.6&; Pavlova,

d13C = –19.2&, d15N = 1&). These changes were

likely to result from the assimilation of the newly-

provided food rather than starvation. Indeed, it has

been reported that starvation often results in an in-

crease in both d13C and d15N (Gannes et al. 1997;

Adams and Sterner 2000; Olive et al. 2003), due to

selective respiration of 12C (DeNiro and Epstein 1978)

or selective excretion of 14N (Hobson et al. 1993). In

contrast, no or little change in isotopic composition in

starved animals was observed in larval krill (Frazer

et al. 1997), mysids (Gorokhova and Hansson 1999)

and bivalves (Yokoyama et al. 2005). However, in our

case d13C and d15N showed opposite variation sug-

gesting that isotopic changes related to starvation are

very unlikely.

At the end of the two monoalgal experiments, car-

bon isotope ratios of the larvae were close to those of

their diet, with differences of –1.5& between larvae

and T-ISO and –0.4& between larvae and Pavlova

(Fig. 1). Considering d15N variations, differences of 1.5

and 5.7& were observed between larvae and Pavlova

and T-ISO, respectively (Fig. 1). These differences

might reflect an isotopic fractionation and/or an

incomplete isotopic equilibrium. Isotopic equilibrium

with a new diet will be reached after the consumer has

either replaced most of its tissue carbon and nitrogen

or has increased greatly in mass. Four- to sixfold

weight increases before reaching the isotopic equilib-

rium have been reported in a variety of animal species

(Fry and Arnold 1982; Herzka and Holt 2000),

including decapod larvae fed Artemia nauplii (sixfold

increase after 12 days in Petrolisthes armatus; Sch-

wamborn et al. 2002). Previous data on Crepidula

fornicata larvae reared under similar conditions as

those of the present study (temperature: 19–20�C;

food: Isochrysis galbana at a concentration of

1.2 · 105 cells ml–1) indicated that a sixfold increase in

–23

–22

–21

–20

–19

–18

–17

–16

–15

0 5 10 15 20

δ1
5
C

 (
‰

)
δ1

5
C

 (
‰

)
δ1

5
C

 (
‰

)

δ1
5
N

 (
‰

)
δ1

5
N

 (
‰

)
δ1

5
N

 (
‰

)

T–ISO

Time (d after release)

–4

–2

0

2

4

6

8

10

0 5 10 15 20

T–ISO

Time (d after release)

–23

–22

–21

–20

–19

–18

–17

–16

–15

0 5 10 15 20

Pavlova

Time (d after release)

–4

–2

0

2

4

6

8

10

0 5 10 15 20

Pavlova

Time (d after release)

–23

–22

–21

–20

–19

–18

–17

–16

–15

0 2 4 6 8 10

T–ISO

Pavlova

Time (d after release)

–4

–2

0

2

4

6

8

10

0 2 4 6 8 10

T–ISO

Pavlova

Time (d after release)

a b

c d

e f

Fig. 1 d13C and d15N of Crepidula fornicata veliger larvae fed on
Isochrysis galbana T-ISO (a, b), Pavlova lutheri (c, d), and both
(e, f). Dashed line indicates C and N isotope ratios for algal

cultures at the beginning of experiment. Note that the duration of
the experiment with the algal mix (e, f) was only 10 days (see text
for explanations)
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weight was reached 10–14 days after hatching (Peche-

nik 1980). This suggested that isotopic equilibrium

might have been reached at the end of the feeding

experiment, although this was not observed from the

present data. Whether the isotopic equilibrium was

reached or not, did not affect our main result showing

changes in both d13C and d15N in the course of larval

development.

These results have strong implications for the

interpretation of isotopic measurements in field-col-

lected larvae, a challenging issue in pelagic food web

studies. We showed that C. fornicata larvae needed at

least 19 days before reaching isotopic equilibrium after

a dietary shift, a period close to the duration of the

free-swimming larval phase (2–3 weeks; Table 1).

Larval development might thus be too short to reach

isotopic equilibrium with larval food. Schwamborn

et al. (2002) reported similar results for larvae of two

decapod species, Sesarma rectum and Petrolisthes

armatus. Their feeding experiments showed that iso-

topic equilibrium was reached after 6–9 days which is

close to the duration of the pelagic larval stage of the

two species (Table 1). Hence, our results suggest that

the C and N isotopic composition measured in field-

collected larvae might only partly reflect actual larval

feeding, but also their initial (i.e. parental) isotopic

signature, especially during the early developmental

stages. In the light of these results, data from field-

collected larvae should be interpreted with caution

when investigating planktonic food webs and the tro-

phic role of invertebrate larvae. In particular, the

comparison of isotopic signatures between larvae of

species with different larval life duration in order to

determine their use of different available food sources

may lead to misinterpretations if measurements are

made while the isotopic composition is still changing.

One way to overcome such problems would be to study

larvae of different size/developmental stage within the

same sample; this will allow for detecting potential

changes in isotopic composition during larval growth in

the field. Future investigations should also focus on the

comparison between larval and parental isotopic

composition because isotopic changes in larvae will

depend on their value at the time of release. This is of

particular interest in brooding species (like C. forni-

cata), in which larval isotopic composition could be

different from that of the parents due to metabolic

processes during brooding.
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