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Abstract Crustaceans of the genus Metanephrops are of

great commercial value in some tropical and subtropical

regions. With the potential development of a new deep

lobster fishery in the Colombian Caribbean Sea, the objec-

tive of this work is to describe for first time the patterns of

spatial and bathymetric distribution, and diel migratory

periodicity of the Caribbean lobster (M. binghami). Data

were collected by trawling in depths between 200 and 550 m

(100 m strata intervals) in the Colombian Caribbean Sea.

Higher biomass and size of these crustaceans were found

between 250 and 350 m, with a maximum at about 300 m.

The study offers diel patterns of M. binghami, which sug-

gests nocturnal activity and burrowing during daylight

hours.

Keywords Colombian Caribbean � Deep-sea Caribbean

lobster � Diel periodicity � Abundance

Introduction

Species of the genus Metanephrops (Decapoda, Nephro-

pidae) are dwellers of the outer continental shelf and

continental slope (Tshudy et al. 2007) and are divided into

four morphologic groups: arafurensis, binghami, japonicus

and thomsoni (Tshudy et al. 2007; Chan et al. 2009). The

binghami group is the only one distributed throughout the

western Atlantic and is also known from southern high

latitudes (Tshudy et al. 2007; Chan et al. 2009). This group

contain only two species: the Caribbean lobster (Meta-

nephrops binghami Boone 1927) and the Urugavian lobster

(Metanephrops rubellus Moreira 1903). M. binghami is dis-

tributed from the Bahamas and southern Florida to French

Guiana including the Gulf of Mexico and the Caribbean Sea

(Holthuis 1991; Tavares 2002). Crustaceans of the genus

Metanephrops are an important economic resource (Holthuis

1991; Chan 1998; Chan et al. 2009) in some tropical and

subtropical regions. Three deep-sea crustaceans of the species

Metanephrops are exploited commercially on the continental

slopes of north-west Australia: M. boschmai (Holthuis 1964),

M. andamanicus (Wood-Mason 1891) and M. australiensis

(Bruce 1966; Ward and Davis 1987; Wassenberg and Hill

1989). New Zealand has developed a deep-sea lobster fishery,

targeting scampi (M. challenger Balss 1914; Smith 1999). An

economically important commercial fishery exists in Taiwan

and East China Sea for M. thomsoni (Bate 1888), M. japonicus

(Tapparone Canefri 1873) and M. formosanus (Chan and Yu

1987; Choi et al. 2008). M. binghami has potential for an

economic exploitation in waters of Venezuela (Gómez et al.

2000; Gómez et al. 2005). Due to the substantial potential new

fishery in the Colombian Caribbean Sea, the objective of this

work is to describe for first time the patterns of spatial and

bathymetric distribution of abundance and the diel periodicity

of the Caribbean lobster (M. binghami).
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Materials and methods

Samples were collected in the Colombian Caribbean Sea

by trawling in water depths between 200 and 550 m

(100 m depth strata sampled at 24 h intervals). Two

experimental trawl surveys were carried out in November

2009 (south zone) and in December 2009 (north zone;

Fig. 1). The sample period corresponds to the dry season

when the high-pressure system forces strong and constant

westward trade winds, and the northern zone is affected by

the Caribbean current and the upwelling of deep waters

(Paramo et al. 2003). Samples were collected by the

commercial shrimp trawler ‘‘Tee Claude’’ using a trawl

with a cod-end mesh size of 44.5 mm from knot to knot, on

a grid of 87 stations, with at least two hauls per 100 m

depth stratum. We were unable to collect samples between

Cartagena and the Magdalena River because of irregular

depths. Appropriate trawl locations were identified using a

commercial echosounder FURUNO FCV 1150 with a

transducer frequency of 28 kHz. The haul duration was

30 min, and the distance travelled by the net was estimated

by means of a GPS Garmin MAP 76CSx. The swept area

was estimated from the spread of the net (11.58 m) and the

speed of the vessel (average 2.5 knots; Gunderson 1993;

King 2007), and biomass of the Caribbean lobster was

estimated in kg km-2.

The total weight, sex and number of individuals per species

from each station were recorded. All the specimens were

weighed to the nearest 0.1 g, and the carapace length (CL) was

measured to the nearest 0.1 mm using callipers from the

posterior edge of the eye socket to the middle hind margin of

the carapace. The frequency data of CL by sex and by strata of

depth of Metanephrops binghami were analysed as a mixture

of probability density functions (pdf), whose modes depend

upon a combination of the distances between means, the

magnitudes of the variances, the proportion of the individual

numbers in each mode and the overall sample size. The quasi-

Newton algorithm was used to fit the frequency of data per

individual to obtain the means, using the software MIX

(Mixture analysis). The statistical method used to fit the

mixture distribution to the data is maximum-likelihood esti-

mation for grouped data (MacDonald and Pitcher 1979). One-

way ANOVA was used to test for significant differences

between sexes of each measurement, once the assumptions of

normality and homogeneity of variance were achieved fol-

lowing log-transformation of the data. We used the Student’s t

test for differences between means of CL by depth strata for

both females and males (Gotelli and Ellison 2004; Manly

2004). Ovary staging was based on the colour of the ovary

(adapted from Mente et al. 2009): stage 1, white-immature;

stage 2, opaque-in development; stage 3, yellow-maturing;

stage 4, green-mature; stage 5, ovigerous female carrying eggs

on its pleopods. For the estimation of the maturity at length,

we considered stages I and II as immature and stages III, IV

and V as mature. Size at sexual maturity (l50%) was modelled

by fitting the logistic function of a mature specimen proportion

with 2 mm of size interval of CL. The curve was fitted by

applying the maximum likelihood and uncertainty by Monte

Carlo resampling (Manly 2006) to obtain the estimated

parameters and the confidence intervals (C.I.; Roa et al. 1999).

P(l) ¼ 1

1þ expðaþ b � CLÞ

where P(l) is the mature female proportion, a and b are the

parameters estimated by resampling and CL the carapace

length. The size at 50% maturity is CL50% = -(a/b) (King

2007).

Geostatistical analyses (Cressie 1993; Petitgas 1993;

Rivoirard et al. 2000) were used to describe the spatial

structure of the Caribbean lobster distribution. The exper-

imental variogram is defined as the variance of difference

between values that are h units apart.

ĉðhÞ ¼ 1

2NðhÞ
XNðhÞ

i¼1

½zðxiÞ � zðxi þ hÞ�2

where ĉðhÞ is semivariance, h is a vector of distance and

direction, and N(h) is the number of pairs of observations at

distance h and given direction, z(xi) is the density of

M. binghami for the ith data point. In order to evaluate the

anisotropic processes, experimental directional variograms

were calculated for raw data (0�, 45�, 90� and 135�).

Finally, ordinary point kriging was used to map the spatial

distribution, to estimate the mean density, the variance of

the mean density and the biomass (Isaaks and Srivastava

1989; Petitgas and Prampart 1995; Rivoirard et al. 2000).

Generalized Additive Modelling (GAM; Hastie and

Tibshirani 1990) was used to analyse the depth preferences

and diel periodicity in abundance of M. Binghami. An
Fig. 1 Study area in the Colombian Caribbean Sea. Circles indicate

the sampled stations
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additive model is an extension of linear models, but allows

linear functions of predictors (depth and hour) to be

replaced by smoothing functions (Agenbag et al. 2003):

y ¼ aþ
Xn

i¼1

fiðXiÞ þ e

where y is the response, Xi is the predictor, a is a constant

and e is the error. The fi is estimated using smoothers. We

used spline (s) smoothing with a Gaussian family to esti-

mate the nonparametric functions. The probability level of

the nonlinear contribution of the nonparametric terms was

made with the significance value (P) for judging the

goodness of fit (Burnham and Anderson 2002).

Results

The size of M. binghami females ranged between 15.5 and

55.3 mm CL (mean 33.6 mm, ±7.2) and for males

between 17.0 and 56.3 mm CL (mean 34.8 mm, ±8.9).

Statistically significant differences between the sexes were

not found (Fig. 2), revealing size homogeneity for both

sexes (P = 0.12). The entire length frequency distribution

of M. binghami CL was characterized by two modes for

female and three for male (Table 1). For females, the first

mode represented 20% (mean 22.3 ± 4.4 mm CL) and the

second one the 80% (mean 35.9 ± 4.3 mm CL). For males,

three modes were observed: the first (mean 20.8 ± 2.2 mm

CL) and third (45.9 ± 1.4 mm CL) with 20% and the

second represented 80% (mean 34.2 ± 7.2 mm CL).

The size structure for the female M. binghami showed a

small increase in CL associated with depth, with a two

modal trend for all depth strata (Fig. 3; Table 1). The male

M. binghami had three modal for the 200–300 m strata and

one-modal structure for the 300–400 m strata, also an

increasing CL with depth. The three modes of the males in

the second strata seem to mix in the third strata. The largest

numbers were found in the 200–300 and 300–400 m strata

(Table 1). Low numbers of individuals caught in the strata

100–200 and 400–500 m prevented their inclusion in the

test for significant differences of CL by depth strata.

However, the mean CL of female and male of M. binghami did

not differ significantly between 200–300 and 300–400 m

strata (P = 0.58).

Of the 336 females analysed to determine different

maturity stages, 31.25% were immature and 68.75%

mature. The size at 50% maturity (l50%) in females (Fig. 4)

was 30.55 mm CL (95% C.I. lower = 30.53, C.I. upper =

30.58), the parameters a = 16.35 (C.I. lower = 16.34, C.I.

upper = 16.50) and b = -0.54 (C.I. lower = -0.54, C.I.

upper = -0.54).

The unidirectional variograms showed similarities in

their modelling of spatial characteristics for M. binghami

(Fig. 5a). This absence of geometric anisotropy can be

demonstrated with the ratio between the maximum and

minimum values of the spatial autocorrelation range in the

unidirectional variograms, which was less than 2 (Table 2).

This means that the spatial structure of M. binghami

aggregation has the same size in all directions of spatial

autocorrelation. Therefore, the spatial structure of Carib-

bean lobster biomass (kg km-2) was studied using an
Fig. 2 Length frequency distributions of Metanephrops binghami of

cephalothorax length (CL)

Table 1 Frequency distribution parameters (proportions of participation, means and standard deviations) for each mode of the histograms of CL

of M. binghami by sex and strata

Strata (m) Sex Proportions Means Standard deviations

p1 p2 p3 l1 l2 l3 r1 r2 r3

All F 0.2 0.8 – 22.3 35.9 – 4.4 4.3 –

All M 0.1 0.8 0.1 20.8 34.2 45.9 2.2 7.2 1.4

200–300 F 0.2 0.8 – 20.2 35.6 – 4.0 3.9 –

300–400 F 0.6 0.4 – 28.1 38.0 – 6.3 3.1 –

200–300 M 0.2 0.6 0.2 20.9 33.0 46.3 3.2 4.8 2.0

300–400 M 1.0 – – 33.9 – – 8.5 – –

Mean and standard deviations are from normal pdf
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experimental isotropic variogram (Fig. 5b). The fitted

spherical variograms showed a nonresolved structure for

the sampling design that considered 0.0% of total variance

(nugget as percentage of sill; Table 2). The autocorrelation

range of the Caribbean lobster was 25.7 km, i.e. the

diameter of M. binghami aggregation of high-density pat-

ches (Table 2). The higher biomass values were distributed

in two well-defined spatial patches in the northern zone of

the Colombian Caribbean Sea. The bulk of the biomass was

distributed between Riohacha and off Punta Gallinas (mean

density = 30.96 kg km-2; biomass = 445,945 kg; CV =

13.48). In the southern zone, this species revealed high

abundances between Cartagena and off the Morrosquillo gulf

(mean density = 20.40 kg km-2; biomass = 234,840 kg;

CV = 20.46; Fig. 6). The estimated mean density and bio-

mass for the combined study area was 26.40 kg km-2 and

684,785 kg (CV = 15.81), respectively.

The nonlinear contribution of the nonparametric terms

was significant (P = 0.00) in explaining the variability of

depth preferences and diel periodicity in abundance of

M. binghami. The relationship between the biomass

of M. binghami and depth (R2 = 0.41) shows that this

species was distributed between 110 and 440 m, but higher

biomass was found between 250 and 350 m (Fig. 7).

Fig. 3 Length frequency

distribution of carapace length

(CL) by sex and depth strata for

M. binghami

Fig. 4 Size at 50% sexual maturity for females of M. binghami

Fig. 5 Directional experimental (a) and omnidirectional (b) vario-

grams showing an isotropic process in abundance of Metanephrops
binghami in Colombian Caribbean Sea

Table 2 Analysis of anisotropy, spherical variogram model fitted to

the directional empirical variogram and omnidirectional spherical

model of variogram for Metanephrops binghami

Parameter 0� 45� 90� 135� Isotropic

Nugget 239.2 0.0 0.0 39.4 0.0

Nugget (% sill) 17.1 0.0 0.0 3.0 0.0

Sill 1,156.3 1,271.3 1,146.0 1,257.6 1,410.9

Range 34.0 27.0 22.6 28.5 25.7

Ratio 1.0 1.3 1.5 1.2 –
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M. binghami showed a marked diel pattern in the catches

(R2 = 0.28), with high values of biomass found in the

nocturne trawls, increasing after 18:00 with highest values

from 0:00 to 4:00 and lowest values during daylight hours.

Discussion

The Colombian Caribbean Sea is influenced by the north-

east trade winds, causing the surface currents flowing in

west and south-west directions almost parallel to the coast.

These trade winds are responsible of upwelling in the

northern zone of the study area, which increases the pro-

ductivity in the Guajira coast (Andrade et al. 2003; Paramo

et al. 2003, 2009). In fact, the highest biomass of

M. binghami was found in the northern zone of the

Colombian Caribbean Sea, where the local oceanography is

modulated by the seasonal upwelling with high produc-

tivity (Paramo et al. 2003, 2009). Studying the spatial

distribution of populations is of great importance for eco-

logical studies, because in the nature most of marine

organisms are not distributed at random, rather, they are

forming patches, gradients or other types of spatial struc-

tures (Rivoirard et al. 2000; Legendre and Fortin 1989;

Legendre 1993; Legendre and Legendre 1998; Paramo and

Roa 2003). Also, successful fisheries management in new

fisheries require the knowledge of population abundance,

the spatial distribution, and size structure (Rivoirard et al.

2000), since failure to recognize spatial complexity of

fisheries has resulted in stock collapses (Hilborn and

Walters 2003; Katsanevakis and Maravelias 2009). Addi-

tionally, deep-sea crustaceans have a patchy distribution

(D’Onghia et al. 1998; Maynou et al. 1998; Belcari et al.

2003), which justifies the importance of using geostatistics

methods to address the spatial distribution structure and

calculate the biomass more precisely (Paramo and Roa

2003).

Metanephrops binghami is found between 230 and

700 m, although is most abundant between 300 and 500 m

in the sand and mud bottoms (Tavares 2002); however, our

results show higher biomass and size are found between

250 and 350 m, with a maximum at about 300 m, which

suggests that this species prefers a narrow depth strata. The

biomass obtained in this study (26.40 kg km-2) was higher

than similar Nephopidae species (Nephrops norvegicus) on

the Catalan Sea (18.87 kg km-2; Maynou et al. 1998),

which gives support to the proposed development of a new

fishery in the Colombian Caribbean Sea. The higher bio-

mass of M. binghami in the Colombian Caribbean Sea by

depth strata is according to high aggregations of M. bos-

chmai (250–350 m) in Australian waters, but M. andama-

nicus (350–400 m) and M. australiensis (430–470 m) were

more deeper (Ward and Davis 1987). However, the Nor-

way lobster (N. norvegicus) is distributed between 200 and

500 m (Maynou et al. 1998; Abelló et al. 2002), but the

highest yields take place at the 500 m stratum (Fonseca

et al. 2007). The size of M. binghami in this study is similar

to other Nephropidae species (Nephrops norvegicus)

caught in Portuguese waters, ranging from 18 to 59 mm CL

(Fonseca et al. 2007) and in the Catalan Sea (Spain, north-

west Mediterranean), ranging from 12 to 58 mm CL

(Maynou et al. 1998), but smaller than reported of

Nephrops andamicus in South Africa, ranging from 47 to

55 mm CL (Berry 1969). Moreover, the fecundity for

females of M. binghami in Venezuela range between 102

and 781 eggs (mean 326) in the size range of 29–52 mm

Fig. 6 Spatial distribution of Metanephrops binghami abundances

(kg km-2) as the reproduction of a spatially stochastic process by

kriging

Fig. 7 Modelling of functional

relationships between biomass

with depth preferences and diel

periodicity in catches

Helgol Mar Res (2012) 66:25–31 29

123



CL (Gómez et al. 2000, 2005), which agree with our results

(30.55 mm CL for females) in the Colombian Caribbean

Sea. The great proportions of large-sized individuals of

M. binghami in our study reflect the unexploited popula-

tions in the study area.

Lobsters are described as nocturnal (Golet et al. 2006),

remaining in shelters during daylight hours, which allows

for protection from predators, and emerging from their

burrows in the evening. Indeed, it is known that species of

genus Metanephrops live in borrows (Tavares 2002). Ward

and Davis (1987) showed that deep water benthic crusta-

ceans have a marked diel periodicity with higher abun-

dances of Metanephrops australiensis in nocturnal catches.

The Norway lobster (Nephrops norvegicus) shows diel

activity patterns at dawn and dusk when it leaves the

burrows; the catches were higher at these times and were

conversely sparse during the day (Trenkel et al. 2008).

Aguzzi and Bahamon (2009) describe this behavioural

rhythm as endobenthic, in which burrowers and buries

show phases of emergence from the substrate and retrac-

tion in it. The animals rest when light increases and feed at

darkness (Aguzzi and Company 2010). These patterns of

diel periodicity agree with our results for M. binghami

which also showed a nocturnal behaviour most likely for

feeding and a burying behaviour during daylight, as the

largest catches were taken during nocturnal trawls. This

study is the first to provide evidence of diel patterns for

M. binghami. Therefore, fishers can adapt their fishing strat-

egy to the diel behaviour of this species. Holthuis (1991)

reported on the big size and potential commercial importance

of the species Metanephros. Nevertheless, according to our

results, more scientific biological research is needed to

understand the life cycle parameters of M. binghami, such as

growth, reproduction size, recruitment, mortality, areas and

season of spawning, nursery areas, and associate biodiversity

before the initiation of a new commercial fishery. This

information will aid in developing appropriate strategies to

initiate, manage and sustain a new commercial fishery, while

taking into account protection and conservation of the existing

ecosystem.
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