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Abstract The role of intracontinental migration patterns
of European eel (Anguilla anguilla) receives more and
more recognition in both ecological studies of the European
eel and possible management measures, but small-scale
patterns proved to be challenging to study. We experimen-
tally investigated the suitability of fatty acid trophic mark-
ers to elucidate the utilization of feeding habitats. Eight
groups of juvenile European eels were fed on eight diVerent
diets in a freshwater recirculation system at 20°C for
56 days. Three groups were fed on freshwater diets (Rutilus
rutilus, Chironomidae larvae, and Gammarus pulex) and
four groups were reared on diets of a marine origin (Clupea

harengus, Crangon crangon, Mysis spec., and Euphausia
superba) and one on commercial pellets used in eel aqua-
culture. Fatty acid composition (FAC) of diets diVered sig-
niWcantly with habitat. FAC of eel muscle tissue seemed to
be rather insensitive to fatty acids supplied with diet, but
the general pattern of lower n3:n6 and EPA:ARA ratios in
freshwater prey organisms could be traced in the respective
eels. Multivariate statistics of the fatty acid composition of
the eels resulted in two distinct groups representing fresh-
water and marine treatments. Results further indicate the
capability of selectively restraining certain fatty acids in
eel, as e.g. the n3:n6 ratio in all treatments was <4, regard-
less of dietary n3:n6. In future studies on wild eel, these
measures can be used to elucidate the utilization of feeding
habitats of individual European eel.

Keywords Catadromy · Habitat utilization · Freshwater · 
Marine · Salinity · Fatty acids · Trophic ecology

Introduction

Despite the relatively small number of datasets that provide
information on the recruitment of the European eel
(Anguilla anguilla, L.), it is widely accepted that both
recruitment and stock size of the species have been in a
dramatic downward trend for the last two decades (ICES
2008). Today, the stock is considered to be out of safe bio-
logical limits and A. anguilla has been listed in the red book
of endangered species all over Europe (Dekker 2003; ICES
2008). As a result of numerous (most likely interacting)
factors, estimates of actual spawning stock biomass have
been reduced to 2–12% and the abundance of glass eels to
less than 5% of its level prior to the early 1980s (ICES
2002, 2006; Bonhommeau et al. 2008).
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It has been widely speculated that following metamor-
phosis from glass eel stage, juvenile eels migrate into conti-
nental freshwaters (Tesch 1999). However, it is still under
discussion to which extent yellow eels move between fresh-
water and marine habitats during their continental phase
(Daverat et al. 2006; Shiao et al. 2006; Thibault et al.
2007a; Thibault et al. 2007b). In order to substantially
monitor and protect the European eel stock, it is therefore
essential to gain better knowledge about the whereabouts of
the stock and/or individual eels in continental waters and to
Wll up existing gaps in the knowledge of its biology.

The feeding habits of the European eel are generally
accepted to be extraordinarily diverse and variable (Tesch
1999), and the European eel is often considered to show
great trophic opportunism (Sinha et al. 1975; Tesch 1999;
Schulze et al. 2004). Such conclusions are usually drawn
from stomach content analysis, which are known to harbor
a number of biases both in sampling and interpretation
(Cortes 1997) and can hardly reveal more than very recent
feeding due to variable digestion and gut evacuation. It is
therefore desirable to supplement knowledge of feeding
and foraging ecology based on stomach samples with
an additional time-integrating biochemical method e.g.
analysis of consumer stable isotope ratios or fatty acids
(Kuusipalo and Kakela 2000; Harrod et al. 2005; Vinson
and Budy 2011).

As most Wsh are incapable of synthesizing polyunsaturated
fatty acids (PUFA) de novo, they are completely dependent
on dietary uptake of these nutrients. Therefore, fatty acid
compositions (FAC) of higher trophic levels reXect the
availability of fatty acid (FA) in the food chain (Henderson
and Tocher 1987). Numerous studies have documented var-
ious inXuences of diet on the FAC in Wsh (Boggio et al.
1985; Saito et al. 1997; SteVens 1997; Kirsch et al. 1998;
Saito and Murata 1998; Saito et al. 2002). As FAC reXects
the integration of food items over weeks to months, it might
therefore be more convincing for drawing general conclu-
sions than stomach samples (Arim and Naya 2003). Fatty
acids are potentially suitable for the use as biomarkers for
feeding and/or foraging behavior. This is due to their bio-
logical speciWcity and the fact that many fatty acids are
transferred conservatively through food webs from primary
producers to succeeding trophic levels. On strength of those
characteristics distinct diVerences in, e.g. n3:n6 and the
eicosapentaenoic acid to arachidonic acid (EPA:ARA)
ratios can be found between freshwater and marine organ-
isms (Lovern 1935; Reiser et al. 1963; D’Abramo 1979).

The objective of the present study was to examine the
role of dietary inXuence on the fatty acid composition in
European eel provided with foods of known and contrasting
FACs. Furthermore, the study aimed to examine the poten-
tial of fatty acid analysis (FAA) to determine the habitat
of wild-caught animals. DiVerent potential marine and

freshwater food sources were provided to juvenile Euro-
pean eel (Anguilla anguilla) in a controlled laboratory
experiment. Subsequent to the feeding period, individual
fatty acid proWles were examined in muscle tissue to trace
back dietary inXuence.

Materials and methods

Animal husbandry and experimental design

Pigmented juvenile eels (Anguilla anguilla) were obtained
from a commercial Wsh farm (Fischzucht Reese; Sarlhusen,
Germany) in May 2008. Acclimatization to water condi-
tions was ensured by keeping the eels in a 500-liter fresh-
water tank for 8 weeks at »20°C. The eels were fed with
commercial pellets (A 0.7 Perle Eel; Skretting) every
second day. The water was renewed once a week. For the
feeding trial (56 days), 96 eels were randomly taken out of
the acclimatization tank and transferred into a freshwater
recirculation system in a temperature-controlled room at
20°C with a 12 h/12 h light regime. Eels selected for the
experiment had a mean (§SD) total length of 18.8 §
1.6 cm and mean (§SD) mass of 8.4 § 2.3 g. The recircu-
lation system consisted of 32 plastic tanks (360£193£
208 mm) with in- and outXow installed to achieve a Wlling
volume of approximately 8 L. Water exchange in the tanks
was adjusted to be threefold to fourfold per day. The tanks
were connected to a bioWlter with a total volume of 60 L
and a bioactive surface area of »23 m2. Water lost by
evaporation in the bioWlter was balanced with freshwater
every day. Plastic tubes were provided as shelter. To pre-
vent the eels from escaping, plastic covers were mounted
on top of each tank. The eels were divided into 32 groups
of three individuals each. The eight diVerent diets were
allocated to the 32 tanks, resulting in four replicates per
treatment. In order to document individual growth, visible
implant elastomer tags (Northwest Marine Technology,
Inc., Shaw Island, WA, U.S.A.) were applied to each eel
resulting in an individual code.

Experimental diets

With respect to the facultative catadromous lifecycle and
the related broad range of possible food items of the Euro-
pean eel, putative fresh-, brackish-, and saltwater organisms
were chosen as experimental diets. Diets were kept frozen
at ¡20°C. Prior to feeding, food organisms were defrosted
and fed ad libitum in bite-sized pieces or as whole organ-
isms once a day. Leftover food was removed every day
prior to feeding.

Roach (Rutilus rutilus) was chosen to represent a fresh-
water piscivorous diet. R. rutilus was caught in a freshwater
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pond (Dörpsee, Emkendorf) near Kiel, Germany. Small
pieces (approximately 0.5 cm3) of Wlet were fed. As gam-
marids are considered to contribute a major part of small
eel diet in freshwater habitats (Mann and Blackburn 1991),
Gammarus pulex was chosen to represent a freshwater
crustacean diet. G. pulex was caught in the freshwater River
Eider (Kiel, Germany) and fed as whole animals. Repre-
senting a possible insect diet of the European eel, Chiro-
nomidae larvae were obtained frozen (Claudia Erdmann
GmbH, Germany) and fed as whole individuals. For logis-
tic reasons, herring (Clupea harengus) was chosen as
potential marine piscivorous diet of European eel, even
though eels are unlikely to feed on herring in the wild.
C. harengus was obtained frozen from a commercial Wsh-
ery (Wiese Eduard & Kruse Ivens GmbH, Germany). Small
pieces of dorsal muscle (approximately 0.5 cm3, skin
included) were fed to the eels. To represent marine crusta-
cean diets, we used PaciWc krill Euphausia superba and
mysids. Both were supplied frozen by an aquarium food
manufacturer (Claudia Erdmann GmbH, Germany) and fed
as whole organisms. To account for possible feeding on
brackish water crustaceans, the brown shrimp (Crangon
crangon) was a representative for crustacean diet. C. cran-
gon was caught in Kiel Bight and with respect to the hydro-
logical properties of the Western Baltic should be
considered a brackish water diet. However, for statistical
analysis, it was assigned to “marine diets.” Small pieces
(approximately 0.5 cm3) were fed. Commercial pellets
(A 0.7 Perle Eel) were obtained from a Wsh feed producer
(Skretting) and stored at 4°C.

Sample analysis

At the end of the feeding period (56 days), the eels were
anaesthetized with ethylene glycol monophenyl ether (5 ml/
10 l; 0.0005% aqueous solution), killed, and frozen at
¡80°C. Cross-sectional samples of the same position and
portion (approximately 0.5 cm, anterior of the dorsal Wn)
were taken from each animal. Approximately 200 to 300 �g
of dorsal muscle tissue was extracted from each sample.
Lipid extraction was conducted by storing the samples in
2 ml Dichlormethan/Methanol (2:1) at ¡80°C for 4 days.
The FAC of eels and diets was analyzed as fatty acid
methyl esters (FAMEs) after Malzahn et al. (2007). Result-
ing chromatograms were postprocessed using GALAXIE
CHROMATOGRAPHY WORKSTATION (Version 1.7;
Varian Inc.).

Statistical analysis

All statistics were done in STATISTICA 8.0 (StatSoft).
Since FAC was measured as percentage of total FA
content, the dataset was arcsin-transformed for statistical

analysis. SpeciWc growth rate was checked for signiWcant
diVerences and tank eVects with nested ANOVA with
“Diet” and “Tank” assigned as factors. “Tank” was treated
as random factor and nested in “Diet.” In order to document
distinction of diets and eels by their FAC, two separate
analyses were conducted. (I) To conWrm diet-habitat, diet
samples were checked for signiWcant diVerences in fatty
acid concentrations and fatty acid ratios previously
described to diVer between habitats (marine and freshwa-
ter) by analysis of variance followed by post hoc compari-
son of means with Fisher LSD test. (II) To distinguish the
eels by means of their FAC, Wrst, a principle component
analysis (PCA) followed by a factor analysis was con-
ducted. Subsequently, nested ANOVA was used to check
for signiWcant diVerences in fatty acids and to exclude tank
eVects. “Diet” and “Tank” were assigned as factors with
“Tank” treated as random factor and nested in “Diet.” To
assess the diVerences between treatments, post hoc compar-
ison of means using Fisher LSD test was performed. In all
tests, level of signiWcance was set to be 0.05.

The analysis of FACs as a whole required a multivariate
statistical approach. Therefore, multidimensional scaling
(MDS) based on Bray-Curtis similarity coeYcient was used
(PRIMER Version 6; PRIMER-E). Statistical diVerences in
total FAC between diets and eels fed on freshwater and
marine diets, respectively, were determined using ANO-
SIM (PRIMER Version 6; PRIMER-E).

Results

Growth performance

Initial weight did not diVer signiWcantly between treatments
(ANOVA, P > 0.05). Eels accepted all diets, albeit some
diets resulted in poor growth. Negative weight development
in the “Gammarus pulex” and “Euphausia superba” groups
was reXected in negative SGRs of ¡0.11 § 0.07% Wday¡1

Table 1 Growth performance of eels at diVerent treatments

Wt = wet weight; SGR = speciWc growth rate (%weight day ¡1); all values
given § SE

Diet Avg
inital wt [g]

Avg
Wnal wt [g]

SGR
[% d ¡1]

Rutilus rutilus 8.3 § 0.4 9.9 § 0.8 0.30 § 0.07

Chironomidae larvae 8.7 § 0.7 9.3 § 1.1 0.06 § 0.08

Gammarus pulex 7.1 § 0.3 6.7 § 0.6 ¡0.11 § 0.07

Pellets 8.5 § 0.8 9.5 § 0.9 0.22 § 0.11

Clupea herangus 9.2 § 0.8 11.1 § 1.0 0.33 § 0.10

Crangon crangon 7.3 § 0.3 8.6 § 0.4 0.29 § 0.08

Mysis spec 9.8 § 0.9 10.4 § 0.9 0.13 § 0.08

Euphausia superba 8.3 § 0.6 7.1 § 0.4 ¡0.25 § 0.05
123



54 Helgol Mar Res (2012) 66:51–61
for eels fed with G. pulex and ¡0.25 § 0.05% Wday¡1 for
eels fed with E. superba, respectively (Table 1). Growth
performance diVered signiWcantly between treatments

(P < 0.05; Table 2). Highest growth rates were documented
in the two piscine treatments with 0.3 § 0.07% Wday¡1 for
eels fed with R. rutilus and 0.33 § 0.1% Wday¡1 for eels
fed with C. harengus (Table 1). No tank eVects could be
detected (Table 3).

Fatty acid composition

Postprocessing of the chromatograms resulted in the
detection of a total of 30 fatty acids (Tables 4, 5). FAC of
dietary organisms and eels was primarily dominated by the
saturated fatty acids (SFA) C16:0 and C18:0, the monoun-
saturated fatty acids (MUFA) 18:1n-9, 16:1n-7, 22:1n-9
and 20:1n-9, and the polyunsaturated fatty acids (PUFA)
18:2n-6, 18:3n-3, 18:4n-3, 20:4n-6 (Arachidonic acid;
ARA), 20:5n-3 (Eicosapentaenoic acid, EPA), 22:5n-3 and
22:6n-3 (Docosahexaenoic acid, DHA). All of these fatty
acids were present to at least 2% of total FA content in
more than one FAC of dietary organisms and/or eels
(Tables 4, 5). The remaining fatty acids accounted for only
a minor part of the total FAC.

The most striking diVerences in FAC of prey organisms
originating in freshwater and those from marine habitats
were signiWcantly lower n3:n6 (ANOVA, P < 0.05) and
EPA:ARA (ANOVA, P < 0.05) ratios in freshwater diets
than in marine diets (Table 3; Fig. 1). The pattern of a
signiWcantly lower n3:n6 ratio in freshwater diets was
found again in eels (Table 3; Fig. 1).

Fatty acids and fatty acid ratios responsible for most of
the variance in both diets and eels were identiWed by PCA
(Table 6). Analysis of similarities showed a signiWcant
diVerence in FAC between diets fed to the eels (ANOSIM,
R = 0.994, P = 0.0001, Fig. 2). Subsequently, analysis of
similarities between those eels fed with a marine diet and
those fed with a freshwater diet showed a signiWcant
diVerence in FAC (ANOSIM, R = 0.226, P = 0.0001,
Fig. 2). Nevertheless, scattering within treatments was
considerable.

Table 3 Main eVects of “Diet” or “Diet-Habitat” and “Tank”
determined by nested analysis of variance (general linear model, type
III decomposition)

“Diet” or “Diet-Habitat” was treated as Wxed factor, and “Tank” was
treated as random factor. A signiWcant eVect is indicated by a P-value
smaller 0.05

* Sum of squares

** SpeciWc growth rate [% d¡1]

Variable Factor SS* df F P

SGR** Tank (Diet) 1.15405 24 0.497 0.97

Diet 3.67474 7 10.92 <0.01

Error 6.19222 64

20:6 n3 (EPA) Tank (Diet-habitat) 0.01809 30 0.83 0.69

Diet-habitat 0.01371 1 22.72 <0.01

Error 0.04607 64

20:4 n6 (ARA) Tank (Diet-habitat) 0.00353 30 1.04 0.44

Diet-habitat 0.00019 1 1.68 0.21

Error 0.00726 64

22:6 n3 (DHA) Tank (Diet-habitat) 0.04785 30 1.16 0.30

Diet-habitat 0.01692 1 10.61 <0.01

Error 0.087762 64

EPA/ARA Tank (Diet-habitat) 0.04523 30 1.05 0.42

Diet-habitat 0.02887 1 19.15 <0.01

Error 0.09173 64

n3 Tank (Diet-Habitat) 0.07960 30 1.07 0.40

Diet-Habitat 0.02931 1 11.05 <0.01

Error 0.15882 64

n6 Tank (Diet-habitat) 0.00837 30 1.48 0.10

Diet-habitat 0.00263 1 5.41 <0.01

Error 0.01209 64

n3/n6 Tank (Diet-habitat) 0.01358 30 1.43 0.12

Diet-habitat 0.00784 1 17.32 <0.01

Error 0.02031 64

Table 2 SigniWcant diVerences in growth performance

Labels indicate organisms fed to the eels. SigniWcant diVerences are highlighted

Values in brackets are SGR (% d¡1)

SGR [%d¡1] Rutilus rutilus Chironomidae 
larvae

Gammarus 
pulex

Pellets Clupea 
herangus

Crangon 
crangon

Mysis spec

Rutilus rutilus (0.30)

Chironomidae larvae (0.03) 0.04

Gammarus pulex (¡0.11) 0.00 0.16

Pellets (0.22) 0.53 0.16 0.00

Clupea herangus (0.33) 0.81 0.03 0.00 0.39

Crangon crangon (0.29) 0.96 0.05 0.00 0.57 0.77

Mysis spec (0.13) 0.15 0.56 0.5 0.41 0.09 0.16

Euphausia superba (¡0.25) 0.00 0.01 0.23 0.00 0.00 0.00 0.00
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Table 4 Fatty acids (% of total FAC § SD) of diets; “sat” = saturated
fatty acids; “unsat” = unsaturated fatty acids; “PUFA” = poly unsatu-
rated fatty acids; a = t-test identiWed a signiWcant diVerence (P < 0.05)

between freshwater (Rutilus rutilus, Chironomidae larvae, and Gamm-
arus pulex) and marine diets (Pellets, Clupea harengus, Mysis spec.,
and Euphausia superba)

Rutilus rutilus 
(N = 4)

Chironomidae 
larvae (N = 4)

Gammarus 
pulex (N = 4)

Pellets 
(N = 4)

Clupea harengus 
(N = 4)

Crangon 
crangon (N = 4)

Mysis spec. 
(N = 4)

Euphausia 
superba (N = 4)

16:0 29.36 § 3.40 26.78 § 3.13 18.97 § 1.87 20.82 § 1.43 20.72 § 4.03 25.29 § 2.58 21.70 § 1.72 22.87 § 0.68

16:1 n7 1.84 § 0.96 8.83 § 2.58 2.94 § 1.39 5.58 § 0.46 2.82 § 1.11 5.62 § 2.19 5.13 § 0.56 5.23 § 0.35

16:2 n4 0.48 § 0.29 0.78 § 0.34 0.64 § 0.14 0.67 § 0.06 0.21 § 0.12 0.47 § 0.13 0.29 § 0.03 0.65 § 0.33

16:3 n4 0.11 § 0.23 0.20 § 0.08 0.33 § 0.05 0.30 § 0.01 0.25 § 0.07 0.27 § 0.22 0.07 § 0.01 1.00 § 0.10

17:0 0.96 § 0.47 1.79 § 0.20 1.53 § 0.32 1.53 § 0.03 0.66 § 0.06 1.44 § 0.18 1.06 § 0.16 2.07 § 0.12

17:1 n7 0.45 § 0.43 0.95 § 0.24 1.33 § 0.74 1.09 § 0.09 0.24 § 0.08 0.83 § 0.50 0.28 § 0.09 0.85 § 0.13

18:0a 14.79 § 1.74 11.39 § 0.82 8.13 § 4.24 6.20 § 0.84 5.66 § 2.19 8.83 § 5.46 3.70 § 2.39 2.82 § 0.29

18:1 n9a 18.07 § 2.92 24.86 § 2.41 30.30 § 2.98 16.41 § 0.43 11.25 § 2.33 20.51 § 1.82 12.87 § 1.22 17.64 § 1.60

18:1 n7 0.15 § 0.05 0.53 § 0.59 0.42 § 0.13 0.18 § 0.04 0.23 § 0.06 0.23 § 0.07 0.48 § 0.04 0.17 § 0.02

18:2 n6a 3.31 § 0.45 13.15 § 2.32 10.30 § 1.29 4.96 § 0.46 1.87 § 0.44 1.79 § 0.32 1.52 § 0.23 2.08 § 0.09

18:3 n6 0.11 § 0.06 0.21 § 0.09 0.23 § 0.17 0.21 § 0.02 0.06 § 0.03 0.11 § 0.05 0.14 § 0.09 0.20 § 0.01

18:3 n4a 0.29 § 0.09 0.36 § 0.06 0.44 § 0.15 0.24 § 0.01 0.10 § 0.02 0.26 § 0.14 0.14 § 0.03 0.10 § 0.02

18:3 n3 2.14 § 0.97 0.75 § 0.11 5.27 § 2.36 0.92 § 0.08 0.74 § 0.32 1.22 § 0.76 0.91 § 0.17 2.27 § 0.14

18:4 n3a 0.33 § 0.23 0.10 § 0.02 0.35 § 0.15 2.03 § 0.16 1.24 § 0.65 0.16 § 0.05 0.69 § 0.13 4.71 § 0.50

20:0a 0.62 § 0.07 2.45 § 0.82 0.85 § 0.57 0.46 § 0.05 0.49 § 0.26 1.98 § 1.08 0.37 § 0.09 0.39 § 0.16

20:1 n9a 0.64 § 0.58 0.47 § 0.18 0.94 § 0.21 3.10 § 0.08 7.46 § 1.60 2.24 § 1.43 1.21 § 0.13 0.40 § 0.21

20:2 n6 0.44 § 0.06 0.01 § 0.02 1.22 § 0.18 0.24 § 0.01 0.27 § 0.10 0.65 § 0.29 1.07 § 0.17 0.10 § 0.01

20:3 n6 0.76 § 0.08 0.05 § 0.10 0.55 § 0.24 0.70 § 0.00 0.18 § 0.07 0.57 § 0.12 0.22 § 0.04 0.17 § 0.02

20:4 n6 (ARA)a 4.45 § 0.73 1.03 § 0.31 2.87 § 0.26 1.14 § 0.03 0.84 § 0.14 2.07 § 0.56 1.72 § 0.22 1.17 § 0.03

21:0a 0.09 § 0.03 0.04 § 0.01 0.11 § 0.07 0.07 § 0.01 0.04 § 0.01 0.04 § 0.02 0.03 § 0.01 0.02 § 0.01

20:3 n3 0.67 § 0.25 0.01 § 0.02 0.73 § 0.37 0.14 § 0.02 0.17 § 0.13 0.22 § 0.11 0.72 § 0.05 0.09 § 0.02

20:4 n3 1.22 § 0.21 0.25 § 0.12 0.42 § 0.10 1.17 § 0.07 0.63 § 0.17 0.54 § 0.27 1.04 § 0.21 0.71 § 0.14

20:5 n3 (EPA)a 5.52 § 1.80 4.67 § 1.67 8.08 § 3.05 13.46 § 0.84 8.86 § 0.78 13.76 § 5.14 23.12 § 1.53 19.48 § 1.01

22:0a 0.11 § 0.01 0.12 § 0.03 0.18 § 0.11 0.09 § 0.01 0.08 § 0.01 0.15 § 0.07 0.05 § 0.00 0.05 § 0.01

22:1 n9 0.41 § 0.45 0.22 § 0.10 0.20 § 0.11 1.84 § 0.07 13.79 § 3.13 0.28 § 0.14 0.17 § 0.04 0.09 § 0.05

22:2 n6a 0.00 § 0.00 0.00 § 0.00 0.14 § 0.09 0.71 § 0.04 0.26 § 0.14 0.20 § 0.10 0.31 § 0.07 0.88 § 0.05

22:5 n3 (DPA) 1.64 § 0.32 0.00 § 0.00 0.57 § 0.30 1.81 § 0.08 0.78 § 0.24 1.12 § 0.41 0.65 § 0.11 0.51 § 0.05

22:6 n3 (DHA)a 11.05 § 3.01 0.00 § 0.00 1.95 § 0.82 13.29 § 0.71 19.46 § 4.77 8.95 § 2.84 19.94 § 1.52 13.16 § 1.08

24:0a 0.00 § 0.00 0.00 § 0.00 0.00 § 0.00 0.25 § 0.04 0.21 § 0.11 0.21 § 0.30 0.23 § 0.06 0.05 § 0.05

24:1 n9a 0.00 § 0.00 0.00 § 0.00 0.00 § 0.00 0.39 § 0.02 0.43 § 0.15 0.00 § 0.00 0.16 § 0.04 0.04 § 0.05

�sata 45.98 § 4.98 42.58 § 4.06 29.92 § 5.80 29.47 § 2.37 28.05 § 6.01 38.00 § 6.50 27.25 § 3.03 28.32 § 0.91

�1 unsat 21.55 § 5.22 35.86 § 1.66 36.12 § 3.49 28.58 § 0.37 36.21 § 7.27 29.70 § 3.31 20.30 § 0.86 24.43 § 1.73

�2 unsata 4.23 § 0.62 13.94 § 2.64 12.31 § 1.29 6.59 § 0.53 2.61 § 0.62 3.10 § 0.37 3.20 § 0.25 3.71 § 0.27

�3 unsat 4.08 § 1.25 1.57 § 0.20 7.55 § 2.58 2.51 § 0.10 1.51 § 0.57 2.65 § 0.99 2.19 § 0.33 3.84 § 0.23

�4 + unsata 24.21 § 5.73 6.05 § 1.99 14.26 § 4.27 32.89 § 1.66 31.81 § 3.90 26.61 § 8.72 47.16 § 2.75 39.74 § 1.18

�unsata 54.07 § 5.01 57.42 § 4.06 70.23 § 5.64 70.57 § 2.36 72.14 § 5.92 62.06 § 6.49 72.85 § 3.05 71.73 § 0.89

sat:unsata 0.86 § 0.19 0.75 § 0.12 0.43 § 0.12 0.42 § 0.05 0.40 § 0.11 0.63 § 0.17 0.38 § 0.06 0.39 § 0.02

�n3a 22.57 § 5.18 5.78 § 1.69 17.38 § 5.88 32.82 § 1.71 31.88 § 3.59 25.98 § 7.95 47.07 § 2.39 40.94 § 1.26

�n6a 9.06 § 0.54 14.45 § 2.72 15.32 § 1.83 7.95 § 0.52 3.49 § 0.56 5.39 § 0.62 4.99 § 0.31 4.61 § 0.12

n3:n6a 2.47 § 0.43 0.39 § 0.07 1.15 § 0.42 4.13 § 0.18 9.44 § 2.54 4.77 § 1.17 9.46 § 0.57 8.89 § 0.16

�C16 PUFA 0.59 § 0.52 0.98 § 0.31 0.97 § 0.19 0.97 § 0.06 0.46 § 0.16 0.74 § 0.22 0.36 § 0.03 1.65 § 0.26

�C18 PUFAa 6.18 § 1.67 14.56 § 2.45 16.59 § 2.73 8.37 § 0.66 4.02 § 1.26 3.53 § 1.04 3.39 § 0.50 9.37 § 0.67

�C20 PUFAa 13.05 § 2.73 6.03 § 2.04 13.88 § 3.49 16.84 § 0.82 10.95 § 0.99 17.82 § 5.68 27.89 § 1.67 21.73 § 0.87

�C22 PUFAa 12.69 § 3.30 0.00 § 0.00 2.67 § 1.11 15.81 § 0.81 20.50 § 4.54 10.27 § 3.30 20.91 § 1.38 14.56 § 1.09

�PUFAa 32.51 § 5.35 21.56 § 4.61 34.11 § 5.66 41.99 § 2.15 35.93 § 3.05 32.36 § 8.32 52.55 § 2.53 47.30 § 1.41

EPA:ARAa 1.23 § 0.29 4.44 § 0.63 2.79 § 0.87 11.84 § 0.50 10.87 § 2.93 6.74 § 2.22 13.53 § 1.02 16.66 § 1.11

DHA:EPAa 2.06 § 0.37 0.00 § 0.00 0.25 § 0.09 0.99 § 0.04 2.23 § 0.61 0.66 § 0.06 0.86 § 0.03 0.68 § 0.08
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Table 5 Fatty acids (% of total FAC § SD) in muscle of juvenile eels
reared on diVerent diets; “sat” = saturated fatty acids; “unsat” =
unsaturated fatty acids; “PUFA” = poly unsaturated fatty acids; a =  t-test

identiWed a signiWcant diVerence (P < 0.05) between freshwater (Rutilus
rutilus, Chironomidae larvae, and Gammarus pulex) and marine treat-
ments (Pellets, Clupea harengus, Mysis spec., and Euphausia superba)

Eel Rutilus 
(N = 12)

Eel Ch.larvae 
(N = 12)

Eel Gammarus 
(N = 12)

Eel Pellets 
(N = 12)

Eel Clupea 
(N = 12)

Eel Crangon 
(N = 12)

Eel Mysis 
(N = 12)

Eel Euphausia 
(N = 12)

16:0a 13.76 § 0.74 12.28 § 0.75 12.60 § 1.10 15.69 § 1.51 13.89 § 1.10 15.77 § 0.53 15.41 § 1.40 14.30 § 0.89

16:1 n7a 5.11 § 0.26 4.26 § 0.26 4.65 § 0.63 5.69 § 0.61 5.04 § 0.33 4.90 § 0.62 5.23 § 0.29 5.10 § 0.46

16:2 n4 0.22 § 0.00 0.20 § 0.01 0.24 § 0.02 0.29 § 0.03 0.22 § 0.05 0.23 § 0.02 0.24 § 0.02 0.24 § 0.04

16:3 n4 0.24 § 0.03 0.20 § 0.01 0.24 § 0.03 0.26 § 0.03 0.24 § 0.02 0.22 § 0.04 0.23 § 0.02 0.24 § 0.01

17:0a 0.30 § 0.02 0.31 § 0.02 0.35 § 0.05 0.36 § 0.06 0.31 § 0.03 0.43 § 0.05 0.36 § 0.02 0.35 § 0.04

17:1 n7a 0.26 § 0.01 0.23 § 0.01 0.24 § 0.01 0.27 § 0.02 0.28 § 0.02 0.30 § 0.02 0.25 § 0.01 0.26 § 0.01

18:0 3.50 § 0.33 3.31 § 0.24 4.02 § 0.98 3.28 § 0.12 2.83 § 0.25 4.28 § 1.67 3.46 § 0.49 3.19 § 0.43

18:1 n9 28.87 § 1.86 26.13 § 1.53 26.70 § 1.77 26.54 § 1.98 25.26 § 1.51 29.28 § 1.54 26.14 § 0.49 26.67 § 1.01

18:1 n7 0.46 § 0.02 0.45 § 0.02 0.45 § 0.02 0.46 § 0.03 0.45 § 0.02 0.44 § 0.06 0.48 § 0.01 0.47 § 0.02

18:2 n6a 4.42 § 0.35 4.24 § 0.16 4.98 § 0.33 4.40 § 0.10 3.93 § 0.11 4.32 § 0.50 4.20 § 0.30 4.40 § 0.13

18:3 n6 0.12 § 0.01 0.17 § 0.12 0.16 § 0.06 0.11 § 0.03 0.10 § 0.02 0.11 § 0.02 0.12 § 0.02 0.13 § 0.01

18:3 n4 0.18 § 0.01 0.17 § 0.00 0.21 § 0.03 0.26 § 0.05 0.19 § 0.01 0.18 § 0.01 0.18 § 0.01 0.18 § 0.01

18:3 n3 0.72 § 0.05 0.51 § 0.09 0.73 § 0.06 0.72 § 0.10 0.62 § 0.06 0.63 § 0.10 0.66 § 0.09 0.67 § 0.18

18:4 n3 0.51 § 0.06 0.50 § 0.13 0.55 § 0.02 0.69 § 0.15 0.57 § 0.03 0.48 § 0.09 0.59 § 0.11 0.63 § 0.05

20:0 0.25 § 0.02 0.93 § 1.16 0.36 § 0.06 0.24 § 0.06 0.24 § 0.03 0.41 § 0.10 0.27 § 0.06 0.29 § 0.13

20:1 n9a 17.91 § 1.01 20.02 § 0.93 18.52 § 1.80 13.61 § 5.48 17.62 § 0.90 13.54 § 4.57 17.17 § 1.70 17.47 § 1.03

20:2 n6a 0.46 § 0.01 0.45 § 0.03 0.47 § 0.01 0.44 § 0.02 0.42 § 0.01 0.42 § 0.06 0.43 § 0.01 0.40 § 0.02

20:3 n6a 0.97 § 0.10 1.03 § 0.06 1.15 § 0.22 0.89 § 0.04 0.69 § 0.12 0.97 § 0.06 0.86 § 0.09 0.89 § 0.08

20:4 n6 (ARA) 0.82 § 0.04 0.76 § 0.07 0.86 § 0.18 0.69 § 0.06 0.74 § 0.11 0.94 § 0.13 0.72 § 0.08 0.71 § 0.08

21:0 0.02 § 0.01 0.02 § 0.01 0.02 § 0.00 0.03 § 0.00 0.03 § 0.01 0.03 § 0.00 0.03 § 0.01 0.02 § 0.01

20:3 n3 0.19 § 0.02 0.13 § 0.03 0.15 § 0.02 0.16 § 0.02 0.19 § 0.02 0.13 § 0.03 0.16 § 0.02 0.14 § 0.01

20:4 n3 1.52 § 0.09 1.47 § 0.22 1.46 § 0.08 1.68 § 0.19 1.60 § 0.07 1.22 § 0.08 1.49 § 0.10 1.60 § 0.10

20:5 n3 (EPA)a 3.04 § 0.52 3.17 § 0.77 3.18 § 0.11 4.34 § 0.89 4.13 § 0.28 3.69 § 0.59 4.04 § 0.51 3.87 § 0.36

22:0 0.03 § 0.01 0.04 § 0.00 0.06 § 0.02 0.03 § 0.01 0.03 § 0.01 0.05 § 0.00 0.03 § 0.01 0.03 § 0.01

22:1 n9a 6.25 § 0.76 7.56 § 0.52 7.31 § 1.40 6.06 § 0.79 7.00 § 1.12 5.63 § 1.12 5.67 § 0.42 5.89 § 0.48

22:2 n6a 0.23 § 0.03 0.27 § 0.05 0.24 § 0.05 0.36 § 0.05 0.31 § 0.03 0.22 § 0.05 0.28 § 0.03 0.30 § 0.03

22:5 n3 (DPA) 1.98 § 0.10 2.31 § 0.33 2.17 § 0.42 2.42 § 0.34 2.48 § 0.41 2.30 § 0.63 2.25 § 0.07 2.33 § 0.17

22:6 n3 (DHA)a 7.25 § 0.89 8.34 § 1.85 7.35 § 0.88 9.64 § 1.53 10.13 § 0.70 8.40 § 1.95 8.73 § 0.83 8.82 § 0.49

24:0 0.07 § 0.02 0.10 § 0.01 0.09 § 0.03 0.10 § 0.01 0.10 § 0.02 0.13 § 0.02 0.09 § 0.02 0.10 § 0.02

24:1 n9a 0.33 § 0.03 0.43 § 0.04 0.50 § 0.11 0.29 § 0.09 0.36 § 0.12 0.35 § 0.11 0.24 § 0.04 0.24 § 0.04

�sata 17.98 § 0.59 17.02 § 1.07 17.54 § 1.71 19.76 § 1.42 17.49 § 1.26 21.17 § 2.28 19.69 § 1.98 18.33 § 1.52

�1 unsata 59.20 § 1.41 59.08 § 2.61 58.37 § 1.94 52.92 § 3.95 56.01 § 0.86 54.43 § 1.68 55.17 § 1.83 56.14 § 2.27

�2 unsat 5.33 § 0.31 5.15 § 0.22 5.94 § 0.29 5.50 § 0.13 4.89 § 0.16 5.19 § 0.59 5.15 § 0.29 5.35 § 0.12

�3 unsata 2.42 § 0.09 2.22 § 0.16 2.63 § 0.21 2.41 § 0.13 2.03 § 0.15 2.24 § 0.07 2.21 § 0.08 2.25 § 0.13

�4 + unsata 15.13 § 1.55 16.55 § 3.16 15.57 § 1.24 19.45 § 2.98 19.65 § 1.30 17.03 § 3.35 17.82 § 1.65 17.97 § 0.76

�unsata 82.07 § 0.57 83.01 § 1.07 82.51 § 1.71 80.28 § 1.43 82.58 § 1.29 78.90 § 2.25 80.35 § 1.96 81.71 § 1.50

sat:unsata 0.22 § 0.01 0.21 § 0.02 0.21 § 0.03 0.25 § 0.02 0.21 § 0.02 0.27 § 0.04 0.25 § 0.03 0.23 § 0.02

�n3a 15.22 § 1.59 16.44 § 3.30 15.58 § 1.21 19.64 § 3.05 19.71 § 1.30 16.86 § 3.26 17.92 § 1.66 18.06 § 0.96

�n6a 7.02 § 0.45 6.92 § 0.14 7.87 § 0.59 6.90 § 0.17 6.21 § 0.15 6.98 § 0.67 6.62 § 0.44 6.84 § 0.26

n3:n6a 2.19 § 0.35 2.37 § 0.44 2.01 § 0.21 2.85 § 0.41 3.20 § 0.25 2.41 § 0.48 2.71 § 0.31 2.65 § 0.23

�C16 PUFA 0.46 § 0.03 0.40 § 0.02 0.48 § 0.04 0.56 § 0.06 0.46 § 0.04 0.45 § 0.05 0.47 § 0.03 0.48 § 0.04

�C18 PUFA 5.95 § 0.25 5.59 § 0.35 6.63 § 0.23 6.19 § 0.33 5.41 § 0.10 5.72 § 0.44 5.75 § 0.27 6.01 § 0.21

�C20 PUFAa 6.99 § 0.53 7.01 § 0.91 7.27 § 0.37 8.20 § 1.15 7.78 § 0.43 7.37 § 0.84 7.70 § 0.63 7.62 § 0.27

�C22 PUFAa 9.47 § 0.96 10.92 § 2.16 9.76 § 1.25 12.42 § 1.91 12.93 § 1.13 10.93 § 2.62 11.26 § 0.93 11.46 § 0.41

� PUFAa 22.87 § 1.26 23.93 § 3.39 24.14 § 1.36 27.36 § 3.17 26.57 § 1.33 24.46 § 3.58 25.18 § 1.72 25.57 § 0.81

EPA:ARAa 3.84 § 0.85 4.32 § 1.08 3.95 § 0.42 6.32 § 1.12 5.72 § 0.77 4.14 § 0.32 5.88 § 0.99 5.58 § 0.93

DHA:EPAa 2.44 § 0.17 2.74 § 0.05 2.36 § 0.32 2.26 § 0.25 2.48 § 0.19 2.25 § 0.21 2.17 § 0.09 2.32 § 0.07
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Discussion

Growth performance in the present study was in the same
magnitude as previously reported by de la Higuera et al.
(1999). They documented SGRs (%weight day¡1) in Euro-
pean eel fed for 12 weeks with diVerent artiWcial diets to be
ranging between 0.04 and 0.39% day¡1. Even though most
of the recorded SGRs in this experiment were in the same
range, two of the present treatments (G. pulex and E. sup-
erba) resulted in negative SGRs. Possible reasons for

negative weight development include insuYcient food
quality, adaptations to the experimental environment, and
interactions between individuals. Knights (1983) and Wickins
(1985) described hierarchical behavior in European eel to be
enhanced at low rearing densities. However, weight devel-
opment of eels in the tanks of the two treatments with nega-
tive mean SGR (G. pulex and E. superba) does not support
hierarchical interactions being a possible reason for the
poor growth. Individual growth performance does not
indicate a single eel dominating the rest in the G. pulex and

Fig. 1 Fatty acids (% of total FAC) and fatty acid ratios in diet sam-
ples and muscle tissue of juvenile eels. Dot = mean value,
box = §standard deviation, whiskers = §0.95 conWdence interval;

“Freshwater” and “Marine” are mean values of diVerent diet-habitats;
SigniWcant diVerences between diet-habitats are indicated by*
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E. superba tanks. Thus, negative SGR was most likely due
to insuYcient food quality. Nevertheless, as all eels seemed
to be feeding, an at least partial replacement of fatty acids
in the muscle tissue was assumed. Therefore, none of the
groups were excluded from analysis.

Several studies have documented the inXuence of dietary
lipid composition on the fatty acid composition in A. spp.
(Vanvliet and Katan 1990; Agradi et al. 1995; Garcia-Gallego
et al. 1999; Bae et al. 2010). However, these studies used
artiWcially enriched diets, and it was often aimed at improv-
ing Xesh quality for human consumption. Results were very
variable, and lipid composition in muscle tissue of juvenile
eels often seems to be rather conservative. This holds true
for the present study with lipid composition in muscle tissue
seemed to be rather insensitive to dietary FAC. Abrami
et al. (1992) showed that wild eels have (I) signiWcantly
lower total lipid content and (II) signiWcantly lower PUFA
content than farmed eels. On strength of this diVerence

Table 6 Principal component analysis of FAC in diets and eels; trait
loadings on the Wrst axis; shown are correlation coeYcients with the
Wrst axis

* Variance explained by the Wrst axis

Diets Eels

Variance explained* 39% 30%

16:0 0.17 0.04

16:1 n7 ¡0.32 0.33

16:2 n4 ¡0.67 0.28

16:3 n4 0.03 0.10

17:0 ¡0.33 ¡0.02

17:1 n7 ¡0.61 0.23

18:0 ¡0.25 ¡0.36

18:1 n9 ¡0.75 ¡0.49

18:1 n7 ¡0.27 ¡0.10

18:2 n6 ¡0.95 ¡0.06

18:3 n6 ¡0.50 0.10

18:3 n4 ¡0.76 0.20

18:3 n3 (alpha-linoleic) ¡0.31 0.25

18:4 n3 0.34 0.68

20:0 ¡0.39 ¡0.16

20:1 n9 0.25 ¡0.45

20:2 n6 0.07 ¡0.03

20:3 n6 0.08 ¡0.30

20:4 n6 (ARA) ¡0.04 0.06

21:0 ¡0.33 0.15

20:3 n3 0.09 0.55

20:4 n3 0.40 0.65

20:5 n3 (EPA) 0.47 0.91

22:0 ¡0.39 ¡0.22

22:1 n9 0.26 ¡0.20

22:2 n6 0.35 0.72

22:5 n3 (DPA) 0.42 0.77

22:3 n3 (DHA) 0.83 0.96

24:0 0.44 0.22

24:1 n9 0.28 ¡0.07

SATT ¡0.10 ¡0.15

1un ¡0.56 ¡0.75

2 un ¡0.97 0.10

3 un ¡0.30 0.08

4 + un 0.74 0.97

Sum uns 0.10 0.15

SAT/UNSAT ¡0.09 ¡0.16

n3 0.70 0.97

n6 ¡0.91 0.00

n3/n6 0.84 0.88

SUM C16 PUFA ¡0.35 0.26

SUM C18 PUFA ¡0.84 0.24

SUM C20 PUFA 0.47 0.90

SUM C22 PUFA 0.82 0.96

SUM PUFA 0.47 0.94

EPA/ARA 0.43 0.69

DHA/EPA 0.73 ¡0.13

Fig. 2 MDS plot of FAC of (a) diets and (b) eels; freshwater
diets = black; marine diets = white
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between wild and farmed eels, Garcia-Gallego et al. (1999)
are giving one possible reason for the present results. They
suggested that the high-energy diet fed in Wsh farms prior to
the experiment might have led to an extremely high muscle
fat content in juvenile eels and thus inhibited the complete
turnover of storage lipids. This point seems to apply also for
our study. Considering the extensive stocking strategy in
Europe where the large part of stocked materials being
juvenile farmed eels, it seemed reasonable to use farmed
eels instead of wild-caught eels in the present experiment.
Furthermore, changes in fatty acid composition in Wshes
due to a change in diet are most likely a result of dilution.
Stabilization of FAC after a diet-shift was reported to
exceed our feeding period of 56 days in several carnivorous
Wsh species (Regost et al. 2003; Robin et al. 2003; Jobling
2004). However, Elsdon (2010) was able to detect a signiW-
cant inXuence of diet on FAC in black bream (Acanthopag-
rus butcheri) from a hatchery broodstock after a feeding
period of only 42 days. It has to be noted that he was using
juvenile Wsh with an initial size of 25 mm that most likely
have much higher turnover of lipids. However the present
analysis focused on PUFAs that are not usually used as
energy reserves (Brett and Muller-Navarra 1997). There-
fore, a complete turnover of storage lipids should not be
essential for detecting the dietary inXuence.

In the present experiment, it was possible to recover
some of the signiWcant diVerences in FAC of the diets from
freshwater and marine habitats in the muscle lipid composi-
tion of the respective eels. Especially the 20:5n-3 to 20:4n-6
(EPA:ARA) ratio showed a clear pattern of higher ratios in
eels reared on marine diets. It has previously been shown
that the EPA:ARA ratio can be used as a bioindicator to
diVerentiate between freshwater and marine animals (Innis
et al. 1995; SteVens 1997; Diraman and Dibeklioglu 2009).
The diVerence could be traced back to a substantially
higher EPA levels in eels fed with marine diets. Higher
EPA levels in marine organisms have previously been doc-
umented in several studies (SteVens 1997; Makhutova et al.
2003). EPA has been described as one of the most abundant
PUFAs in marine Bacillariophyceae (Zhukova and Aizdai-
cher 1995), and Vanderploeg et al. (1996) documented an
almost tenfold amount of EPA in marine green algae than
in freshwater green algae.

It is noteworthy that both in the “Crangon crangon” diet
and in eels fed with Crangon crangon, the EPA:ARA ratio
was somehow an intermediate between freshwater diets/
eels and fully marine diets/eels, which might reXect the
brackish habitat where C. crangon were captured.

One of the most commonly used bioindicators for the
distinction between marine and freshwater organisms is the
n3:n6 ratio, with marine organisms having substantially
higher ratios than freshwater organisms (SteVens 1997).
Analysis of dietary FAC supports those Wndings of higher

n3:n6 ratios in marine food organism than in freshwater
food organism. This pattern was again found in eels fed
with diVerent diets. Again, Crangon crangon and the eels
fed with it showed an intermediate n3:n6 ratio between
freshwater and fully marine treatments.

Regardless of dietary n3:n6 ratio, all eels maintained a
ratio <4. Such a low ratio is commonly considered to be
typical for freshwater Wsh (Innis et al. 1995). Furthermore,
it is noteworthy that both � n3 and � n6 in eels of all treat-
ments diVered from the values in respective diets. Espe-
cially eels reared on Mysis spec., E. superba, and C.
harengus must have taken up high amounts of n3 fatty
acids (mainly EPA and DHA) with diets. However, sub-
stantially lower levels were detected in the respective eels.
Thus, eels in the present study seemed to not uncondition-
ally incorporate the complete amount of dietary n3 and n6
fatty acids into their muscle tissue, resulting in lower pro-
portions of these fatty acid families in eels than in respec-
tive diets. Distinct diVerences between diet and consumer
fatty acid composition have previously been reported by
Christiansen et al. (1991) and Malzahn et al. (2010).

It has earlier been described that the essential fatty acid
(EFA) requirements of freshwater Wsh can usually be met
by dietary 18:3n-3 and its conversion into 20:5n-3 (EPA)
and 22:6n-3 (DHA) (Ackman 1967; Dave et al. 1976;
Sargent et al. 1995). Christiansen et al. (1991) described that
in rats, the conversion of 18:3n-3 to EPA and DHA is posi-
tively correlated to dietary 18:3n-3 content but negatively
to that of dietary EPA and DHA content. They suggest that
the conversion of 18:3n-3 is an optional pathway to ensure
suYcient EPA and DHA supply. Applying this suggestion
on the present study, the absence of DHA in Chironomidae
larvae might have induced a high conversion of dietary
18:3n-3 into DHA in eels. Kanazawa et al. (1979) showed
that Anguilla japonica is able to synthesize EPA and DHA
from 18:3n-3. In addition, their results indicated a preferen-
tial synthesis of 18:3n-3 to DHA rather than to EPA. Our
results support these Wndings with signiWcantly higher
DHA amounts in eels fed with Chironomidae larvae than
that found in the diet. Therefore, it should be concluded that
the European eel is capable of balancing low supply of cer-
tain polyunsaturated fatty acids (PUFA) by converting
18:3n-3 preferably into DHA that has just recently been
described to play a more important role in Wsh growth than
EPA (Boersma et al. 2009). Consequently, 18:3n-3 should
be considered as an EFA for the European eel and needs to
be taken up with the diet. This has previously been sug-
gested for Anguilla japonica by Takeuchi et al. (1980).

It was possible to further illustrate diVerences in FAC
between eels fed with marine and freshwater diets using
multivariate approaches. In the MDS plot, two distinct
groupings (freshwater and marine) are discernible. These
results support the distinction of eels feeding in marine and
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freshwater habitats on the strength of their speciWc fatty
acid composition.
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