
ORIGINAL ARTICLE

Small-scale spatial variation of soft-bottom polychaete biomass
in an Antarctic glacial fjord (Ezcurra Inlet, South Shetlands):
comparison of sites at different levels of disturbance

Krzysztof Pabis • Robert Sobczyk

Received: 19 September 2014 / Revised: 20 November 2014 / Accepted: 25 November 2014 / Published online: 12 December 2014

� The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract There is still only a small number of studies

dedicated to Southern Ocean benthic biomass, especially

on species level. Here, we analyze polychaete biomass in

two areas of the Antarctic fjord Ezcurra Inlet characterized

by different levels of disturbance associated with activity

of glaciers. Material was collected in March 2007 in the

90–130 m depth range. Twenty van Veen grab (0.1 m2)

samples were collected in the inner area of the fjord and 20

in the fjord mouth. Cluster analysis clearly separated those

two parts of the fjord. Mean total biomass was significantly

higher in the outer region (14.4 ± 5.5 g/0.1 m2) compared

with the inner part (3.6 ± 0.8 g/0.1 m2). The highest

biomass in the outer, not disturbed area was noted for

Amphitrite kerguelensis, Aphelochaeta/Chaetozone, Scali-

bregma inflatum, Euchone pallida and Maldane sarsi ant-

arctica, while in the inner region, only Aphelochaeta/

Chaetozone had high biomass values. Average individual

biomass and biomass of majority of polychaete functional

groups was also higher in the outer area. Comparison of

species composition and abundance with data collected

30 years ago in the studied area revealed also important

differences in community structure.

Keywords Biomass � Polychaeta � Distribution patterns �
West Antarctic � Disturbance

Introduction

Antarctic benthic biomass is characterized by large varia-

tion associated with intensity of disturbance processes and

depth (Brey and Gerdes 1997). Distribution patterns in

zoobenthic biomass may further vary depending on taxo-

nomic and ecological groups (Saiz-Salinas et al. 1997;

Pabis et al. 2011). Despite some earlier studies of the

Southern Ocean benthic fauna (e.g., White and Robins

1972; Saiz-Salinas and Ramos 1999; Piepenburg et al.

2002; Barnes and Brockington 2003), the knowledge about

the distribution of benthic biomass is still very scarce

compared with the analysis of abundance. Moreover,

almost all the previous researches were based on the ana-

lysis of higher taxa, and there are only single studies on

biomass at species level (Bromberg et al. 2000; Pabis et al.

2014a). Therefore, identifying key species from various

taxonomic groups that constitute the core of biomass at

various sites is very important for further discussion on the

ecology of the Antarctic benthic communities. Such studies

are especially important in the context of the ongoing cli-

mate change observed in the region of the West Antarctic

Peninsula (WAP) (Clarke et al. 2012). Semi-closed eco-

systems of glacial fjords such as Ezcurra Inlet are consid-

ered highly vulnerable to those changes (Smale and Barnes

2008; Sicinski et al. 2011; Weslawski et al. 2011; Grange

and Smith 2013). The recent synthesis prepared in the

framework of the Census of Antarctic Marine Life

(CAML) pointed out that Admiralty Bay is a model system

for the studies focusing on the climate change influence on

benthic fauna (Sicinski et al. 2011). It was also highlighted

recently that warming could result in declining of body size

and reduced biomass of various organisms, including

benthic macrofauna (Linse et al. 2006; Daufresne et al.

2009; Okamura et al. 2011). Thus, the baseline knowledge
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on the biomass will be needed to allow for future com-

parisons and further monitoring. Moreover, the comparison

between sites located at different distances from the gla-

ciers may mimic future changes and allows to create pos-

sible reaction scenarios (Wlodarska-Kowalczuk and

Weslawski 2001; Weslawski et al. 2011).

Polychaetes are ideal organisms for such studies. They

are among the predominant taxa that build Antarctic ben-

thic communities in terms of species richness and abun-

dance (Gambi et al. 1997; Sicinski 2004; De Broyer et al.

2011; Parapar et al. 2011), as well as the most important

biomass component when non-colonial benthic inverte-

brates are taken into account (Jazdzewski et al. 1986;

Mühlenhardt-Siegel 1988; Saiz-Salinas et al. 1998; Saiz-

Salinas and Ramos 1999; Pabis et al. 2011). Polychaetes

are very good ecological indicators of changes in ecosys-

tem functioning (Olsgard et al. 2003; Giangrande et al.

2005) and their high functional diversity allows for studies

of ecological variability (Fauchald and Jumars 1979; Pa-

gliosa 2005).

The aim of this study was to analyze the polychaete

biomass at two areas of the glacial fjord Ezcurra Inlet

characterized by different levels of glacial disturbance.

Biodiversity analysis of those data was used for the bipolar

comparison between Ezcurra Inlet and Arctic fjord

Hornsund (Pabis et al. 2014b). It is the first study with

emphasis on polychaete biomass on the species level in the

areas affected by glacial sedimentation inflow.

Materials and methods

Study area

Ezcurra Inlet is a semi-closed fjord located in Admiralty

Bay (King George Island); (Sicinski et al. 2011). The

maximum depth of this fjord reaches 280 m. The inner and

outer areas of this inlet are partially separated by a sub-

merged sill (Marsz 1983) and differ in terms of intensity of

glacial disturbance and hydrological properties (Sicinski

et al. 2011; Campos et al. 2013).

The inner part of the fjord is under a direct influence of

large tidewater glaciers (Braun and Grossmann 2002). This

part of the fjord is characterized by very weak currents

(Campos et al. 2013). The amount of mineral suspension in

the water at this area was estimated at more than

100 mg dm-3 (Pecherzewski 1980), and sedimentation

inflow is reflected in the character of bottom deposits,

characterized by silt and clay sediments (Sicinski 2004;

Campos et al. 2013). Water turbidity is also high in this

area (Lipski 1987), and primary production is influenced by

glacial sedimentation that cause low concentrations of

phytoplankton (Tokarczyk 1986).

The outer area of the fjord is not influenced by glaciers

(Braun and Grossman 2002). The amount of mineral sus-

pension in water is much lower than in the inner region and

reaches about 15 mg dm-3 (Pecherzewski 1980), and the

water turbidity is low (Lipski 1987). The area is under the

influence of strong current circulation (Sicinski et al. 2011;

Campos et al. 2013). It is characterized by sandy mud,

poorly sorted deposits with the presence of dropstones

(Sicinski 2004; Campos et al. 2013).

Sampling

Sampling was done in March 2007, in the fjord mouth

(100–130 m depth range) and in the inner area of the fjord

(90–130 m depth range; Fig. 1). Twenty van Veen grab

(0.1 m2) samples were collected at five stations (four rep-

licates at each station) in each of those two areas. Alto-

gether 40 quantitative samples were collected, sieved

through 0.5 mm mesh and fixed in 4 % buffered formalin

solution. An additional van Veen grab sample was col-

lected at each station for TOC and granulometric analysis

of the sediments.

Data analysis

The polychaete material was identified to species level

except for the members of the family Cirratulidae that were

identified to generic level. Those morphologically very

similar taxa are often destroyed and lack important diag-

nostic features, thus require special sorting and washing

techniques difficult to apply in standard van Veen grab

sampling for ecological studies. Biomass was of each

polychaete species in each sample that was measured with

accuracy of 0.001 g as blotted wet weight. In the case of

tubiculous species, the tubes were removed. Similarity

between the samples was calculated using the Bray–Curtis

formula. Hierarchical agglomerative clustering of square-

root-transformed data was done. Group average method

was applied (Clark and Warwick 2001). This part of ana-

lysis was done in Primer 6 package. Mean biomass and

density (0.1 m2) with standard deviation (SD) were cal-

culated for the species that had total biomass above 1 g and

frequency of occurrence C20 % in the studied material.

The average individual biomass (AIB) of those species in

each sample was also calculated as biomass divided by

abundance in order to estimate average organism size

(Wlodarska-Kowalczuk et al. 2005).

Each species was also assigned to functional groups

following the classification provided by Fauchald and Ju-

mars (1979). This classification has already been used in

the analysis of polychaete communities in polar fjords

(e.g., Włodarska-Kowalczuk et al. 2005; Kedra et al.

2013). Mean biomass with SD of each functional group in
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both studied areas was calculated. Differences between the

biomass values in both areas were tested using Mann–

Whitney U test in the Statistica 6 package.

Results

The inner area was characterized by silty clay sediments.

Sediments at the outer area were categorized as sandy silt

with the presence of dropstones. Organic matter content

(TOC) in the sediments in the outer area was as high as

2.58–4.83 %.

Mean total polychaete biomass was significantly higher

in the fjord mouth (14.4 ± 5.5 g/0.1 m2, maximum 27.4,

minimum 7.1) than in the inner area (3.6 ± 0.8 g/0.1 m2

maximum 5.2, minimum 2.1) (Mann–Whitney U test

p \ 0.001) (Fig. 2). Samples from both areas were clearly

separated in the cluster analysis forming two groups at high

level of similarity (Fig. 3).

From 90 species recorded (83 in outer area and 58 in the

inner area), 20 had a total biomass in the whole studied

material that exceeded 1 g and frequency of occurrence

C20 % (Table 1). All those 20 species were recorded in the

outer area of the fjord. In the inner region, 17 of those 20

species were found (Table 1). The most important biomass

components in the fjord mouth were Amphitrite kerguel-

ensis (4.2 ± 4.3 g/0.1 m2), Aphelochaeta/Chaetozone

(1.6 ± 0.6 g/0.1 m2), Scalibregma inflatum (1.3 ± 0.6 g/

0.1 m2), Euchone pallida (1.3 ± 1.3 g/0.1 m2) and

Maldane sarsi antarctica (1.0 ± 0.6 g/0.1 m2). All those

species except for A. kerguelensis had also high densities in

this area (Table 1). In the inner region, only Aphelochaeta/

Chaetozone had high biomass values (1.8 ± 0.6 g/0.1 m2).

Mean biomass of all other polychaetes did not exceed

0.4 g/0.1 m2. Species such as Helicosiphon biscoeensis,

Asychis amphiglypta and Lumbriclymenella robusta that

were important components of biomass and abundance in

the outer region were absent in the inner part of the fjord

Fig. 1 Distribution of sampling stations in Ezcurra Inlet

Fig. 2 Mean biomass with 0.95 confidence intervals for the inner and

outer area of the fjord
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(Table 1). Some of the most abundant species (Laonice

weddellia, Levinsenia gracilis, Capitellidae gen. sp.) had

very low biomass reaching mean values of only 0.1 g/

0.1 m2 (Table 1). AIB was also higher in the fjord mouth

than in the inner area for almost all polychaetes. In case of

species such as S. inflatum, E. pallida and M. sarsi ant-

arctica, this value was an order of magnitude higher

(Table 1). Differences between outer and inner region in

biomass, density and AIB for majority of the polychaete

taxa were significant (Table 1).

Functional groups that had the highest biomass in the

outer area were sessile and motile tentaculate surface

deposit feeders SST (4.8 ± 4.2 g/0.1 m2) and SMT

(1.6 ± 0.6 g/0.1 m2), motile and burrowing, sessile, non-

jawed polychaetes BSX (2.9 ± 1.4 g/0.1 m2) and BMX

(1.3 ± 0.6 g/0.1 m2), and sessile, tentaculate filter-feeders

FST (1.8 ± 1.3 g/0.1 m2). In the inner area, only SMT had

relatively high biomass (1.7 ± 0.6 g/0.1 m2). There were

significant differences between the biomass values of all

functional groups except of CMJ, SMT and CDJ (Mann–

Whitney U test p \ 0.001) (Table 2).

Discussion

It was already demonstrated that polychaetes could con-

stitute even 70 % of biomass in some areas of the

Southern Ocean (e.g., Mühlenhardt-Siegel 1988; Saiz-

Salinas et al. 1997, 1998; Bromberg et al. 2000; Piepen-

burg et al. 2002; Pabis et al. 2011). However, almost all

previous studies of the Antarctic benthic communities

were focused on total polychaete biomass, and there is

only scarce knowledge on biomass of particular species

(Bromberg et al. 2000; Barbosa et al. 2010), especially

when compared to the abundance data (e.g., Richardson

and Hedgpeth 1977; Gambi et al. 1997; San Martin et al.

2000; Sicinski 2004; Neal et al. 2011; Parapar et al.

2011). Such data are very important for future assess-

ments of the energy flow in the Antarctic benthic eco-

system. Relation between body mass/size and abundance

is one of the main determinants of resources used (Saiz-

Salinas and Ramos 1999; Dinmore and Jennings 2004;

White et al. 2007). Our study demonstrated that AIB in

taxa such as Aphelochaeta/Chaetozone or M. sarsi ant-

arctica is half as large in the glacially disturbed area

compared with the fjord mouth. Decrease in total mac-

rozoobenthic biomass was already demonstrated for the

benthic fauna in areas affected by various disturbance

processes (e.g., Pearson and Rosenberg 1978; Gonzalez-

Oreja and Saiz-Salinas 1998; Je et al. 2003). Studies done

in the Arctic fjords showed also that influence of glacial

sedimentation on benthic fauna is expressed in similar

way as in sites affected by pollution events or other types

of disturbance (Włodarska-Kowalczuk and Pearson 2004;

Włodarska-Kowalczuk et al. 2005). On the other hand,

some research proved that biomass could increase at sites

affected by moderate levels of disturbance as a result of

increasing dominance of smaller animals (Jennings et al.

2001). In our study, the density of small, motile surface

deposit feeders such as cirratulids was much higher in the

inner part of the fjord; however, this difference was not

reflected in the biomass value due to large decrease in

average individual body mass. Large differences in AIB

between the two studied sites were found for the species

representing various functional groups, including large

size structural taxa such as maldanids and filtrators (taxa

considered vulnerable to disturbance) (Moore 1977;

Widdicombe et al. 2004) as well as motile surface deposit

feeders such as cirratulids that are considered resistant to

various types of disturbance (Borja et al. 2000). It is also

Fig. 3 Dendrogram of samples (Bray–Curtis similarity, square-root-

transformed biomass values, group average grouping method)
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worth mentioning that the scale of differences between

various species differs. Study of AIB was done in the

Arctic fjord; however, this analysis summarized the data

for all benthic macroinvertebrates, not even separated into

main higher taxa (Wlodarska-Kowalczuk et al. 2005).

Nevertheless, those analyses demonstrated that AIB was

lower in the inner part of the fjord. Our study has shown

that those patterns may differ depending on the species.

Those discrepancies suggest that we need a more careful

look at the species and functional group level.

In the Admiralty Bay, the data on the biomass of

particular polychaete species are available for the near-

shore zone of Martel Inlet mostly at shallow (8–25 m)

sites affected by growlers and icebergs (Bromberg et al.

2000; Barbosa et al. 2010). This area is shaped by dif-

ferent set of environmental factors and cannot be directly

compared with our results. Although it is worth men-

tioning that mean polychaete biomass in this area did not

exceed 6 g/0.1 m2 and was similar to values recorded in

the inner area of Ezcurra Inlet. It demonstrated that those

two disturbance agents (mineral sedimentation inflow and

direct impact of ice) may have similar influence on some

of the basic parameters of the benthic community struc-

ture. The most important biomass components in shallow

areas of the Martel Inlet were different. Large predators

Barrukia cristata and Aglaophamus trissophyllys had the

highest biomass in this area (Bromberg et al. 2000;

Barbosa et al. 2010). Both of those species belong to the

most abundant epibenthic polychaetes in the shallow

sublittoral of Admiralty Bay (Pabis and Sicinski 2010b).

In the deeper areas at 60 m, some common infaunal

species such as Aphelochaeta cincinnata and L. gracilis

have the highest biomass (Barbosa et al. 2010).

It was often mentioned that large maldanids are the

most important biomass components of the Southern

Ocean polychaete communities mostly because of their

large body size and relatively high densities (Gallardo

et al. 1977; Richardson and Hedgpeth 1977; San Martin

et al. 2000). However, in the Ezcurra Inlet, small surface

deposit feeders (SST) had higher biomass than large

burrowing species (BMX) even in the outer area. On the

other hand, the species that had the highest biomass

value in the fjord mouth, large sessile surface deposit

feeder A. kerguelensis, occurred at very low densities in

this area (maximum value of 4 ind/0.1 m2). Some earlier

studies have shown that large benthic species could have

lower abundances compared with intermediate size spe-

cies even if those large animals feed at low trophic level

(Warwick and Clarke 1996; Dinmore and Jennings 2004).

Large size burrowing species were more abundant in the

outer area of the fjord. It was demonstrated that the

presence of the larger bioturbators is increasing the

ability of other benthic organisms to process organic

matter by increasing the oxygen content in the sediments

(Widdicombe et al. 2004). It has an important influence

not only on the community structure and diversity but

could also result in higher total and individual biomass

values. On the other hand, reduced individual biomass of

cirratulids in the inner area confirms earlier suggestions

that species dominating in the near glacial areas can

resist disturbance but are not true opportunists that are

employing special life-history traits associated with those

disturbed sites (Fetzer et al. 2002; Wlodarska-Kowalczuk

et al. 2005).

It was suggested that character of benthic fauna in the

glacial bays and inner areas of polar fjords may mimic

future climate-warming-related changes in benthic com-

munities at sites located at larger distance from glaciers

(e.g., Wlodarska-Kowalczuk and Weslawski 2001, Wlo-

darska-Kowalczuk and Pearson 2004). Therefore, our

results from the inner area of Ezcurra Inlet may demon-

strate possible future modifications in community structure

at sites that at present are not affected by a high level of

glacial disturbance. Taking this into account the general

decrease in AIB in the inner area of the fjord supports also

recent opinions that climate warming could affect body

size of various organisms. However, such relationship was

discussed mostly in respect to direct influence of temper-

ature that could affect thermoregulation and metabolic

processes (Daufresne et al. 2009; Okamura et al. 2011). In

the deeper sublittoral of glacial fjords, climate warming is

Table 2 Biomass of polychaete functional groups in both study areas

Functional group Inner area Outer area

Mean ± SD Max Mean ± SD Max

BSX* 0.1 ± 0.1 0.4 3.0 ± 1.5 5.8

SST* 0.7 ± 0.5 1.7 4.8 ± 4.3 14.3

CMJ 0.3 ± 0.4 1.5 1.1 ± 2.8 12.7

HMJ* 0.008 ± 0.007 0.03 0.04 ± 0.01 0.07

BMX* 0.3 ± 0.3 1.5 1.4 ± 0.6 2.5

SMX* 0.02 ± 0.01 0.04 0.09 ± 0.07 0.3

FST* 0.2 ± 0.2 0.7 1.9 ± 1.3 5.5

SDT* 0.2 ± 0.1 0.4 0.6 ± 0.6 2.5

SMT 1.8 ± 0.6 3.2 1.6 ± 0.6 3.1

CDJ 0.003 ± 0.005 0.01 0.002 ± 0.004 0.01

CMJ carnivore, motile, jawed; CDJ carnivore, discretely motile,

jawed; HMJ herbivore, motile, jawed; SMX surface deposit feeding,

motile, non-jawed; SDT surface deposit feeding, discretely motile,

tentaculate; SMT surface deposit feeding, motile, tentaculate; SST

surface deposit feeding, sessile, tentaculate; SDJ surface deposit

feeding, discretely motile, jawed; SMJ surface deposit feeding,

motile, jawed; BMX burrowing, motile, non-jawed; BSX burrowing,

sessile, non-jawed; and FST filter-feeding, sessile, tentaculate

* Significant differences between both areas
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reflected mostly in the increased intensity of disturbance

processes along the fjord axis.

Admiralty Bay is probably the most comprehensively

studied site in the Southern Ocean (Sicinski et al. 2011),

providing a large background knowledge on diversity of

benthic communities with special reference to the poly-

chaete fauna based on the material gathered 20–30 years

ago when climate warming was not as strongly pro-

nounced as in the present time (e.g., Sicinski 1986, 2004;

Petti et al. 2006; Pabis and Sicinski 2010a, b). A recent

polychaete diversity comparison (Pabis et al. 2014b)

showed that the level of disturbance in Ezcurra Inlet is

much lower than in the Arctic fjord Hornsund. On the

other hand, it is much higher than in the more southern

WAP fjords (Grange and Smith 2013). It could be

assumed that Admiralty Bay is at the moderate stage of

climate warming between the Arctic fjords and more

southern WAP fjords which are dominated by the large

ampharetid polychaete Amythas membranifera and char-

acterized by a small proportion of mobile deposit feeders

(Grange and Smith 2013). Our results further confirm

moderate character of Admiralty Bay because some of the

large burrowing species such as M. sarsi antarctica were

still present in the inner area of Ezcurra Inlet, while in the

Arctic fjords, large maldanids were absent in the near

glacial areas (Wlodarska-Kowalczuk and Pearson 2004;

Kedra et al. 2013).

Mean polychaete biomass values recorded in the inner

and outer areas of Ezcurra Inlet in the material collected in

1980s were very similar to our results from those two sites

and equaled 2.2 ± 4.3 and 15.5 ± 9.5, respectively,

although investigated areas do no fully correspond with our

sampling sites (Pabis et al. 2011). On the other hand, we

also noted some surprising differences in polychaete

community structure in Ezcurra Inlet compared with earlier

study that was based on the quantitative material collected

in 1985 (Sicinski 2004). Species such as Leitoscoloplos

kerguelensis and Ophelina syringopyge that dominated the

inner part of Ezcurra Inlet then (mean density 10.4 ind/

0.1 m2, max 57 ind/0.1 m2 and 5.7 ind/0.1 m2, max 25 ind/

0.1 m2, respectively) were nearly absent in our samples. L.

weddellia, a species that was abundant in our study

(Table 1) had maximal abundance per sample of only

1 ind/0.1 m2 in the whole material analyzed in 1985 (Sic-

inski 2004). It is also surprising that species such as S.

inflatum and E. pallida constituted the core of biomass and

abundance in the outer area. Both species are very common

in the Antarctic (e.g., Hartman 1966; Blake 1981; San

Martin et al. 2000; Gambi et al. 2001; Parapar et al. 2011);

however, in the studies done in Ezcurra Inlet and central

basin of Admiralty Bay in the 1980s, those polychaetes

were very rare (maximum abundance of only 1 and 4 ind/

0.1 m2, respectively) (Sicinski 2004). Differences in

community structure between those two studies are obvious

although we cannot link this fact with the climate changes

that occurred during the last 30 years in the WAP region,

mostly because of lack of long-term data collected within

this period in regular time intervals and with use of stan-

dardized sampling protocol. Moreover, our analysis was

focused only on small spatial scale in two sampling areas

and any meaningful general conclusion about dynamics of

benthic communities can be made after more comprehen-

sive research. Nevertheless, this pattern seems to be strong,

and it certainly needs further studies during the monitoring

of the Admiralty Bay waters. There are no quantitative

studies analyzing Antarctic benthic diversity and commu-

nity structure at the scale of decades, although there were

no high differences in composition of polychaete commu-

nities in Ezcurra Inlet between 1980 (Sicinski 1986) and

1985 (Sicinski 2004), and results of those two studies in

respect to abundance of the above mentioned species were

similar. Temporal changes in benthic communities attrib-

uted to the strong increase in input of Atlantic water into

the fjord and increased temperature of the West Spitsber-

gen Current were already observed in the Arctic Kongsf-

jorden. However, differences in abundance of dominant

polychaete species were relatively small between 1997 and

2006 (Kedra et al. 2010). On the contrary, Renaud et al.

(2007) found no change in diversity and species compo-

sition of the Arctic benthic communities between 1980 and

2000 as well as between 2000 and 2001 demonstrating low

dynamics of benthic fauna in other polar fjord. Our study

strongly confirms the great need for similar analyses in the

Southern Ocean based on the comparable datasets,

including the data on biomass of particular species.
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