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KURZFASSUNG: Kinetische Theorie und mathematisches Modell des Zellstoffwechsels. Ob- 
wohl der Stoffwechsel eine physikallsch und chemisch ~.ugerst komplizierte Prozegfolge ist, 
kann seine Kinetik durch ein hydrodynamis&es Modell veranschaulicht werden, in welchem das 
Niveau der Fliissigkeit dem chemischen Potential entspricht. Die Funktionen sowohl des In- 
tensit~itsfaktors aIs auch des DrosseKaktors sind jedo& stark nicht-linear, so dag eine kon- 
tinuierliche Analyse, die auf DifferentiaIgMchungen der Kinetlk beruht, Schwierigkeiten be- 
reiten. In die Differentialgleichungen der Kinetik, beispieIsweise yon mRNA oder Repressor, 
werden daher bin~ire Parameter eingeffihrt, da die entsprechenden molekularkinetischen 13ber- 
legungen sonst sehr komptizierte mathematische Modetle ergeben, die es erschweren, quali- 
tative Angaben tiber das Regelungssystem zu machen; daftir gestattet abet die vorgeschlagene 
Methode ntitzliche Vereinfachungen. Zur Simulation wird ein System yon Analogrechner und 
elektromechanischem Relaiskreislauf herangezogen. Liegt die Ausbeute der Re&enmaschine, 
etwa an Repressormenge, iiber oder unter einem bestimmten Schwellenwert, so wird ein Impuls 
durch den S&mitt-Kreisiauf gegeben. Der Impuls wird dem Relaiskreislauf zugefiihrt, welcher 
als molekularer Automat angesehen werden kann und das kontinuierli&e System wie eine 
Fabrik durch einen Computer reguliert. Dutch entsprechende Vereinfachung des KreisIaufs 
und durch Verna&l~issigung der Verz~Sgerung, die dutch AnaIogmaschine und Schmitt-Kreis- 
lauf entsteht, wird das schon friiher mitgeteiIte Moddl erhalten. 

I N T R O D U C T I O N  

Mathematical analysis or model formation of living things has increasingly gained 
m importance. Several biomathematical groups, including the Pennsylvania school of 
CHANCE, GARFINKEL & HIGGINS in America and the group around HEss in Germany, 
are now doing pioneerwork in the use of computers. A mathematical theory of kinetics 
had been developed earlier by biologists, such as v. BERTALANFFY. 

In t961 the "International Conference on Biomathematics" was held at Cul- 
lowhee, North Carolina, U.S.A. Important participants were RASHEVSKY and other 
scientists of the pioneering Chicago school (proceedings were edited by LucAs and pub- 
lished in 1962). In 1963 a special edition of the Annals of New York Academy of 
Sciences (Volume 108) reported on the computer analysis in biomedical research. In 
1965 a "Summer Coloquium" was arranged in Colorado with biomathematical analysis 
as the main topic, and the "6th International Conference on Medical Electronics and 
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Biological Engineering" was held in Tokyo. At the latter meeting many sections were 
devoted to topics of mathematical analysis and computer simulation; [BELLMAN (1965) 
gave a special lecture on "Mathematical Problems Arising in Biomedical Research". 

Cybernetists have a unique way of thinking, whi& takes them far afield the 
ordinary continuous analysis based upon molecular biology. This is revealed by a look 
into the volumes of "Progress in Biocybernetics" (edited by WI~NER & SCHAD~ 1964, 
1965). These schools, however, will be unified, I hope, in the not-too-distant future. 

There are two principal approaches of mathematical analysis or model formation 
with living things: One is c o n t i n u o u s  a n a l y s i s  relying upon the differential 
equations of kinetics and using a differential analyzer, which may be an analogue com- 
puter (HEIi';METS 1964, 1966) or a digital computer programmed for this purpose 
(HEss & BgA~D 1966). The second approach is the f i n i t e m a t h e m a t i c s exem- 
plified by the automaton theory (STAHL 1965a, b), in which a set of discrete states and 
their changes are taken into consideration. 

These two approaches are quite different in their mathematical nature, and it may 
hardly be possible to cover the field of the former by using the latter and vice versa. 
Nevertheless, there are close relations and overlappings between both approaches. The 
author has tried to introduce a digital analysis and an application of a switching cir- 
cuit model into a biochemical system (SUGITA 1961a, 1963; SUGITA & •UKUDA 1963). 
This concept was appreciated by GOODWlN (1963) as a preliminary approximation 
but also criticized, since such a way of thinking would be inadequate in a field where 
continuous analysis is desired, as is ordinarily the case in biochemical systems. STAHL 
(1965a, b) expressed the same opinion; he himself, however, is trying to apply his 
theory of automaton to a system that includes enzyme reactions, since he considers 
each system of enzyme reactions as a kind of automaton. It seems to me that if he tries 
to extend the finite mathematics to the field of a continuous one, then such a procedure is 
not adequate. However, there is a possibility that a certain enzyme system shows digi- 
tal behaviour (GARHNKrL 1965), and he may consider such a system to be an automa- 
ton. In the field of continuous analysis a digital system, when it is adequately pro- 
grammed, may, for instance, be applied as a differential analyzer and be considered to 
represent a kind of quasi-continuous system although it can also be used as a logically 
functioning system. In a general purpose digital computer the two functions therefore 
are only differentiated in the form of soitware. 

In this report an attempt is undertaken to unify the two types of mathematical 
analysis by means of introducing binary numbers into the differential equations of 
kinetics and applying a hybrid computing system, namely of a switching circuit and 
an analogue computer, which is only a simple kind of differential analyzer of limited 
accuracy. It is easy to derive the switching circuit model proposed earlier (SuGITA 
1963, SUGI~rA & FUKUDA 1963) as the result of certain approximations and simplifica- 
tions (SuGITA 1965a). In this case the analogue part of the hybrid system may be 
shown to correspond to delay units of the switching circuit, which constitutes the mole- 
cular automaton (SucITA 1963). 

Our approach may be considered a simplification of the orthodox method of con- 
tinuous analysis, in which nonlinear differential equations are applied to represent the 
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kinetics of a metabolic system. I f  we introduce the step-function approximation for 
representing non-linearity, we can get a differential equation of kinetics which posses- 
ses binary parameters. 

mRNA LEVEL 
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r e p r e s s o r  r 

Fig. 1: Step-function approximation. In this graph r was used instead of y, re instead of ye, 
F1 (r) instead of Fl(y), 0 instead of a and 4' instead of b 

We start, for example, with the following equation 

dy 
d--'t-= F(y) - -  ky 

where F(y) = af(y) + bf(y) 
fly) = 1 when y > yo 

and f(y) = 0 when y < yo 

a and b are constants and yc is a threshold value, f(y) is the negation of the binary 
function fly). Figure 1 shows that a non-linear function F(y) is represented by a step- 
function, which has the value a when y < Yc and b when y >yc. (Somewhat altered 
symbols are used in Fig. 1.) Such a step-function approximation is frequently used in 
mathematical physics, for example, in the square weil potential in the SCHRODINGER 
equation. The idea of this approximation may be related to that of quasi-Iinearization 
of BELlMAn, GLVSS & ROTH (1964). 

If  we are assuming discrete states corresponding to the binary parameters like 
f(y), which are the object of finite mathematics, then this analysis could provide an 
approximate simplification of the continuous analysis. However,  it is very difficult to 
deel with strongly non-linear differential equations. Even a digital computer of large 
capacity may in some cases be insufficient if the switching of parameters or a step- 
function approximation is not used. Therefore, the finite mathematics might correspond 
to one extreme of strong non-Iinearity and the continuous one to another extreme. 

An additional limit to continuous analysis arises if a continuous change brings 
about a discontinuous change, which may be registered by certain means and may in turn 
control the system in a new mode corresponding to it. Spore formation of bacteria, 
fertilization and cell differentiation may deliver examples of such changes. Conse- 
quently, if we would rely upon continuous analysis only and use the computer beyond 
the limit mentioned, we could not obtain biologically significant results. It  is neces- 
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sary, therefore, to hybridize the two types of analysis. This method of unified analysis 
may also be useful in the case of digital computer, if we combine the two types of soPc- 
w a r e s ,  

A close relation exists between non-linearity of kinetic equations and feedback 
control of metabolic systems. Thus the idea of information or feedback in biochemical 
systems has first to be clarified. This will be done in the following section. 

HYDRAULIC MODEL OF KINETICS AND REGULATION OF CELL 
METABOLISM 

In the living organism substances of higher free energy are taken up and consu- 
med. The rate processes of this free energy consumption are driven by intensive factors 
like the chemical potential along the corresponding reaction coordinate or metabolic 
pathway. How to define the chemical potential in a dynamical system, Which is not in 
thermodynamic equilibrium will be discussed later in appendix I. 

R e g u l a t i o n  o f  t h e  d i r e c t  t y p e  

In a dynamical system there may be reaction coordinates, along which the field of 
chemical potential vanishes. Such coordinates may be called "quasi-equilibrium" co- 
ordinates (SuGIT* 1957a, b), since the total system is not really in equilibrium. For 
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Fig. 2: Hydraulic model and quasi-equilibrium 

instance, consider the reaction system of Figure 2, which can be represented by a direct 
analogue model, where the difference in water levels may correspond to the field of 
chemical potential and the flux of reactions belonging to the metabolic pathway may 
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be represented by the rate of flow of the fluid through the pipe. Chemical reactions can 
not be expressed by a change in the ordinary space coordinate but, nevertheless, we 
may use the term "reaction coordinate" concerning the model of a pipe system (GLAs- 
STONE, LAIDLF~ & EYI~ING 1941). Such a quasi-equilibrium can be observed not only 
in biochemical reactions as such but also in processes of membrane permeability. I f  arti- 
ficial disturbances are acting on this quasi-equilibrium (of B and B' or C, D and D'  in 
Figure 2) then the d i r e c t counteraction of recovering forces (according to the law of 
LE CHAT~IEr~-BRAuN) appears. In this kind of regulation the flux system is in a dyna- 
mical balance or equilibrium, while the total system is far away from a thermodyna- 
mical equilibrium. 

It  is interesting to note that the so-called metabolic map can be represented by 
such a pipe system, in which the fluid in a tank corresponds to a chemical substance 
within a compartment. The level difference between the two tanks corresponds quali- 
tatively to the intensive factor of this metabolic pathway but not quantitatively. Let 
us consider a chemical reaction of the following type 

,ti Ai + /l~ A2 + . . . . .  -+ vl B1 -t- v~ B2 + . . .  (2.1) 

Then the flux of this rate (J) process can be given by 

J = o ( U  ~T - -  e, .'/R:r) (2.2) 

where # = 21/z(A1) + 2e#(A2) + . . . . .  
# ' =  vl#(B1) + v2#(B2) + . . . . .  (2.3) 

and #(Ai), for example, is the chemical potential per mol of Ai in the reaction system 1. 
The term "compartment" may be defined as a region wherein both the functional 

form and the value of the chemical potential are the same. 
In equation (2.2) e, " / R T  ~ e ~  ' / R T  represents the in  t e n s i v e f a c t o r or the so- 

called field of chemical potential along this reaction coordinate, and o is the propor- 
tional constant which may be called t h r o t t t i n g f a c t o r. In chemical equilibrium 

we have J = 0 and 

# = # '  or Ate = # - - # '  = 0 (2.4) 

In general, however, the field of chemical potential is not the difference A# = ,u - -  #'.  
Therefore a quantitative correspondence between the level of the fluid and of the 
chemical potential cannot occur. However, it seems justified to consider a direct analo- 
gue model of a pipe system instead of a mathematical model of kinetic equations 

1 If G is the GI~s'  potential, then we have 
d G  8 G  dn(Ai) aG dn(Bj) d~ 
d t  -- ~ 3n(Ai) d t  + ~L~ = - (~t - # ' )  • i 8~(Bi) d t  --dF 

3 

dn(Ai) d~ dn(Bj) d~ 
where d t  = - -  2i '--~- , d t  = vj  d t  

d~  and -~-  is the parameter introduced by D~ DOND~R concerning the ilux of (2.1) from 

d~ 
lei~ to right. This quantity, ( # - # ' )  ~ may he the product of T and the entropy 

d~ 
production of this rate process. ( ~ may be equal to J, see (10) of appendix II.) 
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because the former appears to be more intuitive than the latter, if we do not insist 
upon quantitative exactitude. 

An exponential form of the intensive factor like equation (2.2) can also be 
brought about by a semi-conductor where OHM's  law represents the limiting case of 
expansion of the exponential function and neglects any higher order term. 

From equation (2.4) we can derive the well-known relation of mass action. Let 
us put 

= Z R T  log Ci 2i -~- #0 
i 

(2.5) 
# ' =  X R T  log q,'i + #'o 

J 
where ci and cj are the concentrations of At and Bj respectively. Then, in chemical 
equilibrium, we have 

A,u R T  log Hi Ci ~d = + A#o = 0 (2.6) 
/ h  ci ~5 

where A~uo = /~o - -  #'o (2.7) 

is the standard free energy. I t  can be written: 

- -  A # o  = R T  log K (2.8) 

where K is the equilibrium constant. The law of mass action can be interpreted as the 
balance of forward and backward reactions, the rates of which can respectively be 
represented by 

J1 - -  k H i @  i .1.2 = k ' l l jq"J (2.9) 

where k and k' are rate constants. Then 

J = ] t  - -  J2 (2.10) 

and in chemical equilibrium J1 = J2;  thus equation (2.6) is obtained, if we put 

k' I k = K (2.11) 

In dynamic systems J1 ~= J2 and (2.10) coincides with (2.2), if we put 

k = oe. "°l•r and k' = oe~ 'o/aT (2.12) 

and take (2.5) into consideration. Therefore, equations (2.9) and (2.t0) stand for the 
generalization of the law of mass action, whi& leads to the inference that we ought 
not consider this law in too narrow a sense as if it were a law of chemical equilibrium 
alone. In Figure 2 the throttling factor, a between B and B' or C, D and D'  is large. 
I f  we rewrite the equation (2.2) in the following form 

el*/Rr - -  e j / R r  --  J (2.13) 
O 

and assume that o is very large, we can put 

e~dRT "~ e~dlRT 

although J + 0. This introduces the idea of quasi-equilibrium. In membrane equili- 
brium we have 

A #  + F A g  = 0 (2.14) 
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where A# is the difference of chemical potential of an ion, F is the Faraday constant 
and zlq~ is the difference of electrostatic potential. I f  this equilibrium is disturbed and 
ionic flux I occurs, then instead of (2.14) we arrive at 

A#'  + FAqo' = I / o (2.13') 

which corresponds to (2.13). I f  we can put A# = A#', then we have from (2.14) and 
(2.13') 

3q~' ~ A9) = I /oF 

and we can put A90' --~-. A~o, if I /oF is very small (OHxI 1965). 

REGULATION OF THE INDIRECT OR PARAMETRIC TYPE 

There is still another type of regulation which is not a direct but an indirect one. 
For instance, let us consider an end product inhibition of the type described in Figure 3, 
where the function of the enzymes Fe, E3 etc. is not variable and only that of E1 is 

¢ 1 
A E1 } B _._ E2 ~C ~ N 

1 

feedback inhibition 1 
Fig. 3 : Feedba& inhibition 

changeable and undergoes inhibition by the end product N (El may be an allosteric 
protein). Although the field of chemical potential driving A -+ B is kept constant, the 
flux of the reaction can be influenced through variation of the function of El. In 
Figure 3 Et is represented by a valve which is controlled by the signal emitted by N. 

Thus here no direct coupling between N and A ~ B exists. In some biochemical 
cycle, on the other hand, a reaction product may have some material correlation with 
the reaction A --~ B. In conjugate reactions (e. g. of S ~ P and ATP ~ ADP or 
ADP ~ ATP) a coupling of energy between the two types is required. In the case 
considered by us, however, A ~ B is energetically (and materially) independent of N, 
although, nevertheless, N influences the magnitude of the flux of A ~ B. Such an 
effect is called an indirect or p a r a m e t r i c  one: the rate of the reaction A -+ B is 
controlled by N parametrically. In the study of life processes indirect regulations of 



Mathematical  model of cell metabolism 85 

this type may assume much more importance than the direct ones. Consequently, the 
present report  considers pr imar i ly  parametric regulations. 

Even parametric  action may be represented by two types: an a n a 1 o g u e or 
c o n t i n u o u s interaction as it  occurs in feedback interactions, and a d i g i t a I on- 
off-nature type, exemplified by the performing or lacking action of an operator gene. 
In  the regulation of the t ryptophan level, both types of interaction may coexist 
(SuGrrA 1966a, b). Of  these two types of parametric actions, the digital  or on-off 
interaction is mainly taken into consideration here. I t  will be shown that such a digital 
conceptualization becomes a kind of mathematical approximation or simplification of 
choice whenever a regulation system of strong, non-linear nature has to be investigated. 

The idea of the e q u i f  in  a l l  t y of v. BERTALANFFY has some relation to direct 
(Fig. 2) as well as indirect regulation (Fig. 3), although equifinality might also he 
realized by several other mechanisms, more complex in nature and in some cases with 
a set value (as in automatic control). A recover process may correct any deviation 
from the normal course and regulate the system. In this regard the nature of parame- 
tric action can be clarified (SuGITA 1965b). In Figure 4 a direct action occurs between 

p ..... f----~Ea%-~V----] action I 

A' >A i 
direct ,~ I 
..... rio .  i 

i; 
1 

param. ] 
actlon~ 

BZ_____)B 
direct 
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Parametric Interaction 
and 
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Fig. 4: Parametric action and 
transmission of information 
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Fig. 5. Direct and indirect action 

B' and B but not between A and B. A sends only a signal to the reaction B' - -  B which 
controls this direct action of B' - -  B. The direct action of B M B' is maintained in a 
latent form and the "possibili ty" of this action is "realized" parametr ical ly  by the 
triggering signal of A. I f  B sends a signal back to the system of A '  - -  A and controls 
their interaction parametrically,  a type of indirect action appears called feedback. The 
transmission of parametric action may generally be termed "information".  

Figure 5 demonstrates an example of the coupling of direct and indirect or para-  
metric interaction. Such a coupling - based on a comparison with a locomotive - may 
be obvious in many biological systems. In  this paper  a system with parametric inter- 
action and complex functions due to such a correlation, including feedback, is called 
"c y b e r n e t i c s y s t e m". Such systems may reveal interesting functions or character- 
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istics. The higher the degree of indirect interaction, the higher is the function of the 
system or the system's behaviour. From the point of view of a pure scientist, cyber- 
netics may be considered a tool for studying such a function or for designing and 
manufacturing such systems (SuGITA 1965b). 

The parametric action is ineffective if the intensive factor is not strong enough. 
ELSASSeR (1958) has pointed out the important fact that in a chemical equilibrium the 
function of an enzyme cannot be prominent. If the deviation from the thermodynamic 
equilibrium is small, the intensive factor of every reaction coordinate is also small, 
and the flux may simply be an expanded linear function of the intensive factors. In- 
deed, in the ordinary phenomenological theory of irreversible processes, only linear 
terms are taken into account, and throttling factors are considered as being constant. 
In such a system the parametric action or feedback cannot operate. 

In dynamic systems based on parametric interaction, however, the flexibility of 
the throttling factor plays an important role, and I have proposed a theory consider- 
ing the throttling factor, like the functions of other variables, under the heading of 
"theory of flexible throttle" (S~GiTA 1958, 1961a). tn the future this theory is likely 
to become another kind of thermodynamics of irreversible processes, dealing with 
strong deviations from equilibrium, and in this respect will differ from the ordinary 
theory of irreversible thermodynamics, yet will supplement it. 

The physico-chemical nature of the parametric action will be discussed later. If 
a potentiality or latent possibility is la&ing, the flexibility of the throttling factor 
cannot release any response (SuGITA 1965b). This fact has frequently been neglected in 
the theoretical considerations of the "information theory", which leads us to the con- 
clusion that - although very useful as an abstract theory - the information theory has 
to be applied carefully; we have to bear in mind that it has a rather narrow scope. 

Physically, information represents a pattern which releases a certain response; 
its nature is non-stochastic. In information theory, however, we replace the source of 
information artificially and mathematically by a stochastic process which emits a pattern 
according to the frequency of its appearance. We must not confuse the idea of infor- 
mation as a physical pattern having parametric action and the abstract mathematical 
idea playing the leading role in information theory. The problem in the latter is to 
find an abstract time series, similar to the MAR~OV chains and offering an approach 
especially relevant to information technology. 

DIFFERENTIAL EQUATIONS OF KINETICS HAVING BINARY 
PARAMETERS 

K i n e t i c s  o f  m e s s e n g e r  R N A  f o r m a t i o n  

Genetic information of the structural gene (SG) exerts the parametric action on 
messenger RNA (mRNA) formation, i. e. controls this formation parametrically. Con- 
sidering for instance fl-galactosidase formation of E. coli, SUGITA (1965a) has intro- 
duced a binary number g(z+), which is g(z +) = 1 (3.1) 
when the organism is a wild type and g(z +) = 0, when it is not z + 
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The rate of formation of the corresponding m R N A  may be a function of some 
controlling molecule or regulatory metabolite; if this acts as inhibitor it is called re- 
pressor. We will denote this function as Fl(r). I f  the quantity of repressor r is suffi- 
ciently large, Fx(r) may be very small, say 6" If, on the other hand, r is very small, 
then Fz(r) may reach a saturation value 6. From experiments we know that 6' "" 10-4 6- 
Ft(r) may be evaluated by molecular kinetic considerations (e. g. HEINMETS 1964, 
1966). However,  let us use a step-function approximation of the following kind: 

F~(r) = 0f(r) + 0'f(r) (3.2) 

where f(r) = 1 when r ~ re (3.3) 
f(r) = 0 when r < re 

and r~ is a threshold value of r. Then the rate of m R N A  formation is 

g(z+)Fl(r) = g(z +) { ~ f ~  + o'f(r)} (3.4) 

The rate of m R N A  formation depends on the state of the operator gene (OG) too. 
There are mutants like o c or o ° other than o+ (wild type). In the case of o c a function 
F2(r) is introduced instead of Fl(r), which may approximately be expressed by 

F2(r) = ~o" f(r) + O"' f(r) (3.2') 

where ~" and ~"' are constants and 

0 " =  4~3"' (3.5) 

Then the general form of the rate of m R N A  formation is 

g(z +) { g(o+)Fl(r) + g(oc)F2(r) } (3.6) 

which is equal to zero in the case of o °, if we assume that g(o °) = g(o +) + g(oc), g(o +) 
= g(o °) + g(o~), that is, no overlapping between o +, o c and oo occurs. Let us assume 
for simplicity 

~ ' - -  o, 0 - -  ~" - -  0" '  (3.7) 

then we have, instead of (3.6) 

g(z +3 { g(o +) f(r) + g(o ~) } = 0 g(z+) co (3.6') 

where co = g(o+) fir) + g(o~) (3.8) 

is a binary variable describing the state of the OG; co = 1 corresponds to its o p e n  
state and co = 0 to the c l o s e d  state. Equation (3.8) is equal to the relation derived 
formerly (SuGIrA & FUXUDA 1963), where somewhat different notations were used; 
qualitatively and approximately it may be a useful variable but quantitatively it is 
not. 

The attempt to obtain a quantitative result relying upon such a variable (SuGITA 
& FUKUDA 1963), in which the kinetic equation is written in 

dm 
dt - e co g(z+) - -  lemm (3.9) 

cannot be adequate because here the binary variable is not used adequately. In 
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considering the computer control of fl-galactosidase formation, i. e. the control under 
molecular automaton composed of DNA, RNA, repressor or inducer and enzymes, 
we have to use the binary variable f(r) instead of 6o and should write instead of (3.9) 

cIt - -  g(z+) g(°+) Fl(r)  + g(o~)Fx(r) - -  k~nm (3.9') 

where m is the quantity of mRNA and km is its decay constant. 

GOODWtN (1963) argues against the assumption of an on-off nature of the 
operator gene by referring to the leaky production of fl-galactosidase. If, however, the 
binary variable f (r)  is used instead of co, our consideration may no longer be criticized, 
since the small value assumed for Q' would directly correspond to the leaky production. 

K i n e t i c s  o f  r e p r e s s o r  f o r m a t i o n  

The kinetic equation of repressor formation is in the case of i + written as 
dr 
d--t-= A - -  kr ,  (3.10) 

krc 
where A = 1 + a(J - -  Jo) ~ (3.11) 

re and Jo are respectively the critical values of r and ]. We assume that a > 0, a J% < 1 
and n is an odd number, k is the decay constant of r, and a simple form k r  is assumed 
here. Therefore, the steady state value of r is 

A re 
(r)st~ax --- ----i f--  = 1 + a(J  - -  Jo) ~ 

and (r)~te~ax ->- r~ when J < ]o ~ (3.12) 
(r)st~ay < ro when J > Jo J 

(3.11) is only an assumption and any other form can be adopted if the condition of 
(3.12) is satisfied. 

In the case of i s let us assume 
dr 
d-7-= B - -  k r  (3.10') 

krc (3.11') 
B = 1 + b ( ] -  1%)o 

where b > 0 and b]'o n < 1. J'o is assumed to be larger than Jo of (3.11). According 
to the experimental facts 

J ' o ~  (i00 ,v 1000)]o 
In ordinary experimental condition 

(r)steady -~" r' --=- rc 1 - -  b]'o n "> r~ (3.13) 

If for simplicity we take only i +, i s and i -  into account, then we have instead of (3.10) 
or (3.10'), 
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dr  
dt --  Ag(i+) + Bg@) - - k r  (3.10") 

As there is no overlapping between i +, i s and i - ,  we have 
g(i +) = g(i s) + g(i-), g(i-) = g(i +) + g(is). 

So that, in the case of i - ,  g (i +) = 0, g@) = 0 and (r)~te~ay = 0. In general, we have 
from (3.10") 

r°g(i+) + r'g(i~) (3.14) 
(r)st~aay = 1 + a(J - -  Jo) ~ 

If we define a two valued function f(J), which is 

f(l) = 1 when J ~ Jo 
and f (J)  = 0 when J < Jo 

then we have f(r) = g(i +) f (J)  + g(i~) (3.15) 

Equation (3.15) coincides with the relation derived in a preceding paper (SuGITA & 
F~3KUDA 1963), if we use the notation r, i +, i t and J instead of f (r), g(i+), g(i ~) and 
f(J).  In the experiment of PAr, DEE, JACOB & MONOD (1959) the organism is at first i -  
and atter conjugation i +. So that we put in (3.10") g(i 0 = 0 and g(i +) = 0 at first 
and g(i +) = 1 afterwards. Then this experimental result can be described mathematic- 
ally. 

Equation (3.10") may be generalized in the form: 

dr 
d-t = Ag(i +) + Bg(i ~) + Cg(i-) + Dg(it0 + Eg(i~H) + F g ( i 0 -  kr, 

where C = 0 and F may be an increasing function of J, i.e. J is in this case co-repres- 
sor. In i~ and i~  C and D represent the function of temperature. In i~ k may also be 
an increasing function of temperature. Therefore, r decays at high temperature and 
according to HORIUCHI (1961) this organism behaves as if it were i - .  The temperature 
sensitive nature of the genetic control is observed only in the case of microorganisms. 
In higher organisms experimental evidence may be difficult to obtain; nevertheless, the 
fact concerning the strain i~ of E. coli may hold for temperature adaptation of animals 
tO0, 

COMPUTER SIMULATION 

In Figure 6 (As), (A2) and (A3) correspond respectively to the kinetic equations of 
the inducer J, repressor r and mRNA m. In the case of (A~) a non-linear function gene- 
rator is used corresponding to A of (3.11) or B of (3.II'). itI and other mutants are 
neglected for simplicity. Relay circuit is used for representing the function of g(i +) and 
g(i~). In Figure 7 some kind of simplification is given, for instance a pulse corresponding 
to the binary function f (J )  = 1, which is generated by the SCHMITT trigger (S). Thus 

kro {g(i+) f(r  + 
is generated, and it is applied to (A2). In Figure 7 another simplification of equation 
(3.7) is adopted and the binary variable co of (3.8) is used. Here the combination of 
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(A1) - - - -  (S) and (A.2) - - - -  (S) corresponds to the delay unit. Neglecting these delay 
units we obtain Figure 8, which may be rearranged into Figure 9 proposed by SUGITA 
& FuliUDa (1963). Therefore, the switching circuit model, or the so-called "threshold 

)__~( non-linear 
d ~(A1 function 

inpnt Kinetics \ generator 
of,l of,/ A, B,"" 

r f(i) k,c)-'(A2 ~ S  
Kinetics 

g(i+) ete. of r 
genetic eontrol 

f g ( z ' ) - - ~  

g (o ~ ) ~ 

g (o) ~.1[~ 
g(z[)---{~L/ 

g!~! :: ~ 

Aa ~ N A  

[_..~ ribosome 
level 

Fig. 6: Hybrid system simulating genetic control 

delay " ]"x f ir) 
g(i~) ~ - - ~  A~ )---( S 

f(r) t /  delay 

1 ~ g  { ° + ) - - - - ~ " q  Ix" /9' "Aa "~ mRNA 

[ (r)=g(i+)[ (d)~g (i*) 

Fig. 7: Simplified model of the hybrid system: A2: Analo~e circuit of kinetics of r; 
S: SCHMITT circuit; Aa: Analogue circuit of kinetics of m 

logic", is only a crude approximation or simplification; but even by way of such simpli- 
fication, we may observe important characteristics of such complicated reaction systems 
as are the living organisms. A reaction system or so-called primitive control system 
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which makes a swit&ing circuit appropriately and has delay units may be called mole- 
cular automaton (SuGITA 1963). The biochemical systems in general, however, do not 
always represent such a digital system as was stressed by GOODWlN (1963). However, 
some kind of reaction system, including reactions at the genetic level, may constitute a 
digital system; the analogue part at the enzyme level plays the role of a delay unit. 
Therefore, we can adopt such a simplification. In this respect a continuous system may 

g(i +) .~[/' 

g/i [/ 

g (o+)----+[')-i ~, 

g(o )-----~V 

Fig. 8 : Switching circuit model of genetic control 

g (i ~) g i- ) g(o +) g(o ° ) 
f (./) f (r) 

S~ S~ " 

Fig. 9: Switching circuit model (rearranged) 

be indispensable to an automaton, and the continuous analysis may be complementary 
to the finite one, even though a general purpose digital computer is used. Further, many 
in vivo reactions, whether they be analogue or continuous in nature, may stand under 
digital control; examples are: enzyme induction, cell division or differentiation, and 
spore formation of bacteria. Since such a digital consideration is only a mathematical 
simplification, the problem remains whether or not we are justified to start from a dig- 
ital point of view. 

MATHEMATICAL MODEL OF CELL SIZE REGULATION 

We must be careful in extending a concept based on studies of microorganisms 
to higher organisms. While simple analogy or crude generalization is dangerous, 
abstract considerations and mathematical formulations may be of some help. Y~AS, 
SUGITa & B~NSAM (1965) have discussed the mechanism of cell size regulation using 
mathematical models and an analogue simulation (Fig. 10). They have not yet 
acquired, however, the necessary experimental knowledge concerning R1 and Re, 
which are some kinds of regulatory metabolites; these may represent RNA or similar 
compounds; their molecular nature is leR to future investigations. The mathematical 
model of Y~AS, SUGITA & BENSAM (1965) iS the following: 

dR1 
dt' = TMal - -  blR1 (5.1') 

dR~ 
dt' - -  T~  Tea.2 ~ b2Re (5.2') 
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where Tl~ is the signal of mitosis (i. e. TM = 1 during mitosis and T>i = 0 in the other 

case). T~I is the negation of T~i (T.~i = 1 shows that the cell is not in mitosis). Te is 
another binary parameter, which is 

R1 
Tc = 1 w h e n ~  > c 

(5.4') 
R1 

T~ = 0 w h e n - - y -  < c 

where P is the total quantity of protein, R 1 / P  is the concentration of R1 in the cell and 
c is the critical concentration; ai, as, hi and b~ are constants. 

I PROTEIN 

1 
OECAY 

I DECAY ~ =  ' xx  ] DECAY 
I 
I 
I 

D N A ~  
LOCUS LOCUS 

Fig. 10: Proposed model of cell size regulation. Solid lines indicate flux of material, broken 
lines catalytic action. The RI locus is assumed to be spontaneously active when mitosis termi- 
nates, the R~ locus to be active only under the positive catalytic influence of R1. c is some 

present value 

The kinetic equation of P is assumed simply in the form: 

d P  
7F= a'R~- ~'p (5.3') 

where a' and fi" are constants. I f  we assume that the rate of protein synthesis of a kind 
i is proportional to (mRNA)i, i. e. 

Pi = (proportional coefficient)i (mRNA)i = rate of formation of Pi 

p = v Pi = • (prop.coeff.)i (mRNA)i = a ' R s  = 
i i rate of formation of P 

where R~ = Z (mRNA)i 
i 

then Rs may be the total quantity of mRNA. These constants al, a2, hi ,  b~, a '  and fl', 
are difficult to know, so let us use the following reduced quantities, 

- -  , r~ = R J  , p = 

a l  ~ a2 
P1 - b2c ' a = a --b2al c, f l  = f l ' / b~  
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Then we have instead of (5.1'), (5.2') and (5.3') 

dr1  
dt--7 = bt (TM - -  rl), 

d p  
~t-v = b2 (ar~ -- #p) 

Further let us assume for simplicity that  b~ = b2 = b and put b t '  = t then we have 

d r  2 
d t '  - b2 (Ts~ Te - -  r~) 

dT 1 - -  
~7 - =  T~ - -  rl (5.1) 

d r  2 - -  
d t  - -  T~I T c  - -  r2 (5.2) 

# 
d t  - -  a r.) -- fl p (5.3) 

instead of (5.1'), (5.2') and (5.3'). Equation (5.#) can be transformed in 

Te = 1 when rl > p 1 (5.4~ 
T e =  0 w h e n r l < p  

In our reduced mathematical model the unknown constants are only a and ft. Their 
values are determined empirically so as to give a reasonable curve compared with 
experiment. However,  we can assume that fl < 1 or fl' < b2, i. e. the turnover rate of 
R 1 o r  -R 2 is larger than that  of protein. This is reasonable, because a messenger mole- 
cule cannot be expected to function, if its decay constant is small. In acoustics the 
information of our voice is disturbed by echo, if i t  does not decay adequateiy. 

I N I T I A L  " 

T_.~C_ = I (Vl>V) SCHMITT 

| I 

~B 

Fig. 11: Circuit diagram of analogue computer. This computer is used to solve the Equations 
(5.1), (5.2) and (5.3). Here V1, V~ and V8 are used instead of r l ,  re and p. J : integrator, A : 
adder, - -  1 • sign changer. SCrt~IITT circuit generates a signal current when V 1 -  V > 0. 

TI~ -*- 1 signals the occurrence of mitosis and T~I --~ 1 its termination 

Figure 11 demonstrates the block diagram of our analogue simulation; a SCHMITT 
trigger is used. The values a = 0.1 and fi = 0.01 were selected; the curves are not 
favourable for our purpose if other values of a and fl are assumed. Figure 12 is the 



94 M. SUGITA 

result of our computation. The synthesis of R2 (r~ curve) starts at tl aEer a short delay, 
as rl < p during the interval t < tl. When t > tl, rt 2> p and rs tends to reach its 

dp is proportional to the saturation value, the curve of p becomes nearty linear; i. e. tiT" 

saturation value of r~. At t = tm p = rl, then r2 decays strongly and fluctuates, as 
rt - -  p fluctuates, although the ampIitude is very small and r1-~7, p in rough approxi- 

mation. 

r 

t J# l 
t2 

o r , - p > O  / 

!o / 

/3 =0.01 
a c = O . I  

PROTEIN 

Tc:I 

=-=----- Tc = 0 

Tc=O 

Fig. 12: Result of analogue computation. Solution of equations (5.1), (5.2) and (5.3) concerning 
rl, r2 and p by analogue computation. From top to bottom: curve of r2, protein, p, and rl - -  p 

M A T H E M A T I C A L  MODEL OF CELL D I F F E R E N T I A T I O N  

The idea of the molecular mechanism of cell differentiation proposed by MONOD 
& JACOB (1961) is very suggestive. Figure 13 represents the logical circuit correspond- 
ing to this idea, Figure 14 the circuit of the ordinary flip-flop, in which redundancy is 
taken into account. Due to such a redundancy the action of the flip-flop may be 
stabilized. 

Y~AS, SUGITA & BENSAM (1965) have made suggestions concerning the role 
played by some controlling molecules, which may decay during mitosis. If  the activity 
level of such molecules or regulatory metabolites drops below a certain level, one state 
of molecular flip-flop may be switched to another. SUGITA (1965a) has extended 
this idea and proposed the mechanism shown in Figure 15. The blo& diagram of the 
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J 

P1 (t) 

P~(t) = ~  
P~(t) = ~  

I 

e2(t) 

Fig. 13: Logical circuit of the model of MONOD & JACO~ (1961). P1 (t) = P2 (t - -  ~); P~ (t) = 

P1 (t - -  z) ; where v is the delay 

P1 (t) =P1 (t-- " ¢ ) ~  
P2 (t) =P2 (t--  v ) ~  

Fig. 14: Logical circuit of flip-flop. PI (t) = P1 (t - -  z) Pe (t - -  ~); P2 (t) = P~ (t - -  T,) P1 (t - -  z);  
where P1 (t - -  -c) and P2 (t - -  r) are redundant  factors 

J,, 

I I  
(s)  (s)  
(A) (A) Ib 

(A) ' analogue eomp, 
(S) " Schmitt circuit 

Fig. 15: Proposed circuit of molecular flip-flop. (A) : analogue computer, (S) : SCHMITT circuit 
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analogue computer in the flip-flop circuit (A) has been drawn considering the follow- 
ing equation of kinetics: 

da 
d-T-= T~ TaA - -  kaa 

(6.1) 
db 
d-7--= TM TbB - -  kbb 

where a and b are the quantities of the 
mitosis, A and B are respectively the rate 
decay constants, and T~ and Tb are the 
conditions: 

regulatory metabolites, T~i is the signal of 
of formation of a and b, ka and kb are the 
binary parameters satisfying the following 

T a =  1 when a > a 0  
T ~ = 0  when a < a c  
T b =  1 when b > b o  (6.2) 
T b - - 0  when b < b c  

a~ and b~ are critical values. The pulse T~ = 1 or TD = 1 is generated by the SCHMITT 
trigger (S). Here also the system (A) - - - -  (S) may correspond to a delay unit. 

During mitosis T• = 1, T~ ---- 0, so that 

da db 
dt - .k~a, d~-= --kbb 

and a and b both decay. (i) I f  a~er mitosis a > ac, b > be, then T~ = 1, Tb = 1 and 
a and b can be generated. Such a state may correspond to I of the flip-flop. (ii) I f  at%r 
mitosis a > ae, b < bo, then T~ = 1, Tb = 0, so that a is generated continuously, 
whereas b is not. This may correspond to II~. (iii) I f  a < ae, and b > b~, then T~ = 0 

Fig. 16a 

Fig. 16b 

  s) - (omp)  

Fig. 16: (a) Logical circuit of flip-flop (three kinds of regulatory metabolites); (b) Circuit dia- 
gram of analogue computer 

and TD = 1. Thus, b is generated continuously whereas a is not. This may correspond 
to IIb. State I may correspond to the undifferentiated state and IIa and IIb to the diffe- 
rentiated one. If, on the other hand, a < ao and b < bo, such a cell cannot survive. 
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In case of three kinds of controlling molecules, (a, b and c) being the quantities 
of the regulating metabolites we have instead of equation (6.1): 

da I d~-= T~i Ta (TbT~+TbTc)A - -  l%a 

db ! 
dt -- TM Tb (TcTa+TcTa)B - -  kab t ( 

I d~-= T:~i Te (TaTb@TaTu)C - -  kcc 

where Ta, Tb and To satisfy the following conditions: 

T~ --= 1 when a ~ ae Tb = 0 
T ~ = 0  when a < a e  T o =  1 
T b =  1 when b ~ b ~  Te = 0 

when b < be 
when c > co 
when c < ce 

(6.1') 

(6.2') 

The logical circuit of the flip-flop is given in Figure 16. The molecular me&anism 
proposed by our circuit model is somewhat different from that of MONOD & JACOB 
(1961) (Figure I7). In our model of Figure 18, a is the inducer of EA and EBa and the 

RG~ OG~ SG~ 

P1 ~ $l 

Pa -~ Ez Sa 

I I J I 
RGa OG2 SG2 

Fig. 17: Molecular mechanism considered by MONOD & JAcoB (1961) 

E A EBA E B a b EAB 

A "' E' ~;BA ~ tAB 
, T r ~ - ~ ,  

Fig. 18: Proposed mechanism of molecular flip-flop 

i(a} EAB~ EA EBA~ EB 
a' ~ a, (b) b' ~. b 

' EB (.}- EIB~ a' EA ~ a, < b } ~  b' ~ b 

Fig. 19: Kinetic model of regulatory metabolites 

corepressor of E'r3A formation. Figure 19 illustrates a kinetic model of a and b for- 
mation. The enzyme has to be specific for each reaction, and there are 6 kinds of 
enzymes, i. e. EA, EBA, E'BA, EB, EAB, and E'aB. They are controlled simply by the 
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regulatory metabolites a and b. If the number of regulatory metabolites is 3, we may 
consider the mechanisms of Figures 20 and 21 respectively. This is an extension of the 
idea of "one gene one enzyme". A simplification of the model considered is represented 
in Figure 22; the switching is not only due to the on-off nature of OG but also to the 

RG OG SG RG OG SG RG OG SG 

~ < - ~ * '  4,' * ' ~ * '  ,i,' ,I, ~ ~ " ~ '  ~ ' ~ ' 4, ' 
E AEBAECA ; EB E c B E A B e t  E C EAC EBC 

~BA.CA E' E' E' ~BC 
I { " ' T ~ { "  ' I T  ' ' t ] ' 

RG OG SG RG OG SG RG OG SG 

Fig. 20: Mechanism of molecular flip-flop (three kinds of regulatory metabolites) 

EAB a, EAc)) EA EBC EBA E B ECA ECB E C 
(a) 1' a'---'ka, (b}'--"~ b"'--'~ b'---~b, (c) )) c '<--'~ c' ~'c, 

E)kB E~C EA EBC EBA E B ECA ECB E C 
(a} ) a" ) a'--+a, (b}---~b"--~ b'---'~b, {c} I' c"--'~ c'---~c, 

Fig. 21: Kinetic model (three kinds of regulatory metabolites) 

{a} ~ ) a 

I I I 

,{b} ))b 

Fig. 22: Simplified switching circuit model of the metabolite-formation 

specific nature of enzyme reactions. The influence of existence or non-existence of the 
specific enzyme represented by a switching action, is illustrated in Figure 22 for the 
formation of a, b and c. There is also a phenomenon of logical flip-flop in enzyme 
reaction like that of phosphofructokinase (GARHNKEL 1965). 
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Let us introduce here binary functions f(r~), f(rb) and f(rc), which are 

f(rk) = 1 when rk _>-- (rk)c 
f(rk) = 0 when rk < (rk)c 

Then we can say that the variation of the pattern of f(ra), f(rb) and f(rc) may have an 
important meaning: a clearcut change of this pattern may correspond to the transition 

Table 1 

Change of pattern corresponding to the transition I -+ IIa etc. 

a b c f(ra) f(rb) f(rc) T~, Tb Tc 

I a => ao b ~ bc c ~ co 0 0 0 1 1 1 
IIa a => a¢ b <~ bc c < cc 0 1 1 1 0 0 
IIb a < ao b _> bc c < cc 1 0 1 0 1 0 
IIo a < a~ b "( be c _> co 1 1 0 0 0 1 

I --* II~ etc (Table 1). In this case the genetic pattern, i. e. the base sequence of DNA,  
may be the same during cell life. 

From the view-point of biology, on the other hand, there is a serious problem 
concerning differentiation, e. g. the problem of motivation of the transition, I -+ II~, 
and of its irreversibility. I f  the differentiation is based on a movement of the pattern 
of f(r~), f(rb) . . .  we must search for the mechanism of such a movement. Heterogeneity 
of the ovum, for instance, may be triggered by the metabotites a, b . . . .  and thus 
influence the flip-flop. The CO~2 level or p H  value may also influence the flip-flop. 
Y4AS, StmITA & BENSaM (1965) have discussed this matter but have not yet arrived 
at decisive conclusions. 

The mathematical model considered here may be more suitable than that of 
MONOD & JACOB (1961). The new model cannot be the only conclusive one; more 
suitable ones do exist. However, all other models must be logically equivalent to the 
model considered above. Since many equivalent circuits could be introduced (Scon'a 
& FUK~DA 1963), we have to select the most appropriate one. 

C O N C L U D I N G  REMARKS 

C o n t i n u o u s  a n a l y s i s  a n d  a u t o m a t o n  t h e o r y  

The information of D N A  is primarily recorded in form of the base sequence 
A, T, C, G, but according to the pattern f(ri), f(r~) . . . . .  it may be active or inactive. 
This sequence represents the state of DNA,  dependent of whether the loci corre- 
sponding to k are readable or not. Differentiation may be realized by a rather per- 
manent change of this sequence. In addition, there may be another temporal sequence 
change important in cell physiology, i. e. enzyme induction or repression. 

D N A  may correspond to the tape of the TuRING-machine, the full information 
of which may not only be represented by a genetic one, expressed as base sequence, 
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but also by the pattern f(rk), that is, the information describing whether the genetic 
one is readable or not. The former is permanent except in the case of mutation; 
however, the latter can be stored on tape anew as well as be erased rather easily and 
may be processed by the molecular automaton. The phenotype nature may be con- 
trolled by such an information processing concerning [f(rk)]. On the other hand, the 
genotype nature may be due to the base pattern of DNA.  

In the introduction to this paper the probable limit of the continuous analysis 
was outlined. I f  F(x), for instance, is an increasing function of x, then F(x) decreases 

when x decreases. Let us consider the function F(x)f(x) + G(x)f(x), where f(x) = 0 
when x < xe and f(x) is changed irreversibly to 1, if x once exceeds the threshold 
value xc and this function, which was at first F(x), behaves in the form G(x). Such a 
behaviour may be observed in many living systems as well as in physics e. g. in hyste- 
resis. If  we put 

where f(xt) ~= f(xt-~) C~l(Xt) q- f(xt-~) d.9(xt) 
dl(x) = 1 when x ~ xe 
c~l(x) = 0 when x < xe 
de(x) = 1 when x ~ x'o 
c~2(x) = 0 when x < x'e 

and x'e < xe 

then f(x d shows a hysteresis curve, where xt is the value of x at the time t. Therefore, 
- -  / 

F(x)f(x) + G(x)f(x) shows a two valued function in the domain x e < x N xe. In 
many cases a quantitative change may have a threshold value and generate a quali- 
tative one, which is registered in a digital way. This is the reason why this matter 
cannot be handled by continuous analysis alone. It  is only one type of approximation 
and the finite analysis another. Also the last mentioned reveals limits of its appli- 
cability, therefore, a hybrid computing or analysis has been proposed. 

E n e r g y  a n d  e n t r o p y  o f  a c t i v a t i o n  

Energy is needed for transmission as well as for parametric action of infor- 
mation. Valve action energy is required for valve opening. If  a tank is equipped with 
a valve, then the energy to generate the jet (response), on the contrary, is due to the 
potential energy of the water in the tank. In a chemical reaction the flux of the rate 
process is due to the free energy of this system and represents the response of this 
system. On the other hand, the energy of activation may in some cases be supplied by 
information. If  so, the parametric action of the information may be due to this energy 
supply (in which ATP may play a role). 

However,  the parametric action of D N A  in m R N A  formation or of m R N A  in 
protein synthesis on the ribosome level is somewhat different. In the m R N A  for- 
mation ribonucleoside triphosphates produce a compIex with a base sequence according 
to that of DNA.  If  such a complex were arranged without the influence of the H-bond  
of DNA,  then the probability of having the necessary base sequence would be very 
small. The H-bond  between a nucleotide of D N A  and a ribonucleoside may stabilize 
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the complex similar to the situation in an ice crystal, in which the state of small 
entropy is also stabilized by the H-bond. In the case of mRNA formation entropy of 
activation is due to the base sequence of DNA. Therefore, a close relation between 
negative entropy of information and entropy of activation can be recognized. The 
energy of the nucleoside triphosphates may play a role as energy source for activation. 
Therefore for this process both entropy as well as energy of activation are required. 

There are many types of coupling in chemical reactions. In a chemical cycle a 
reaction-product may be re-used as precursor of another reaction. Such re-use repre- 
sents a material coupling. Another type of coupling is that between endergonic and 
exergonic reactions, e. g. S -~ P and ATP -+ ADP. These couplings are direct ones. In 

E 
addition, there are also indirect couplings, e. g. A -* P and D --* E or E -+ E'; the flux 
of D-+ E or E-+ E' may correspond to the signal current of an electrical communi- 
cation (SuGITA 1961@ 

APPENDIX I 

T h e r m o d y n a m i c s  o f  o p e n  s y s t e m s  

From the thermodynamical point of view living things are quite similar to a siphon 
through which water of a tank flows out. This siphon is an open system, the function 
of which is maintained by the flux of water itself, just like the function of the living 
organism, which is maintained by metabolism. In considering this phenomenon the 
level of tank-water is of greatest importance, because the siphon cannot work, unless 
the level of water is high. This situation is similar to the most important prerequisite 
for the existance of life, namely, that our earth is provided with higher free chemical 
energy, the living organisms representing the "pathways" of free energy consumption. 

It seems at first to be against the law of hydrodynamics that water ascends 
through a branch of the siphon; but this of course is due to the coupling with the 
descending water in another branch, just like the metabolic dynamo of an organism. 
Thus, the state of water at the top of the siphon may correspond to that of the lower 
entropy (higher free energy) level. 

The most prominent feature of life, however, :nay be the parametric control, by 
which the rate of irreversible processes is determined. "Vital force" or "entelechy" 
have frequently been discussed but nothing is able to promote the reactions against 
the laws of thermodynamics. Only the rate of realization of this latent possibility, 
whi& may be determined thermodynamically, can be influenced by the function of 
life, i. e. triggered or inhibited by information and control. This and thermodynamics 
of flux systems will be discussed further in Appendix III. 

According to the phenomenological theory of thermodynamics, fluxes are driven 
by intensive factors, which may be of thermodynamic nature, e. g. the field of a 
&emical potential. From the molecular point of view, however, these fluxes must be 
of a very complicated nature, and it may only be possible in some special cases to 
adopt them as being proportional to the intensive factors. Do the processes in living 
systems parallel such cases, even though they deviate significantly from the thermo- 
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dynamical equilibrium? Still worse organisms are strongly heterogeneous, but we 
must take into account a small number of molecules (HILL 1963, 1964). It  seems 
rather striking that a chemical or electro-chemical potential (redox potential) may 
assume the role of the intensive factor, e. g., in the case of membrane permeation. 

The fluid model tank corresponds to a compartment, the pipes connecting the 
tanks to the pathways of the metabolic map. From the thermodynamical point of 
view the term "compartment" describes a region within which all sites possess the 
same chemical potential and the same functional form. The smaller the region, the 
greater is the fluctuation in number of particles having the same chemical potential, 
since the system is not closed. However, fluctuation may not be the fundamental 
aspect of life; there may be some kind of mechanism which is able to stabilize the 
molecular state against fluctuation, making the grouping (coarse graining) of variables 
possible. This matter will be the topic of a future theoretical study, the theory of 
small systems. 

Within a flux system there are two types of reaction coordinates (page 81). 
Along the quasi-equilibrium coordinate chemical potentials or any other intensive 
factors vanish. Along the flux coordinate the field is of finite strength, and entropy 
production occurs. In special cases the flux is zero, although the field of the intensive 
factor has a finite strength (frozen state). 

Consider an interval c3t, during which the flux J~ c3t can be neglected, then the 
transition of matter along the flux coordinate can be artificially, neglected or frozen 
in and each compartment can be considered in equilibrium, and, in the case of fluores- 
cence for instance, the excited state may also be considered a compartment. In such a 
situation c3t must be shorter than the life time of the electronic state, a triplet state for 
example. Therefore, if a certain group of chemical reactions or quantum transitions 
in the organism can be considered frozen, the corresponding chemical or quantum 
states make compartments, e. g. high energy, low entropy or free radical states. 

From the perspective of statistical mechanics, the pseudo-equilibrium considered 
here may correspond to a certain part in the phase space. Then the other part of this 
super-space can be neglected during c3t in considering the partition function (SuoITA 
1957b). Free energy of such a flux system can thus be considered as an idea, although 
its explicit form is difficult to determine theoretically from the partition function. In 
practice, it may be determined empirically or phenomenologically. 

In small systems virtual force, corresponding to the fluctuation, has to be added 
to the field of chemical potential - a kind of mean value of the fluctuating force in 
space and time as in the LANOEVIN equation of Brownian movement. There may be 
fluctuations of the reaction at the DNA level (rate of mRNA formation, for instance); 
however, such fluctuations may be cancelled at the ribosome level, e. g. at the enzyme 
formation level 1. Then the reaction catalyzed by the enzyme may be rather steady 
(Fig. 12) and fluctuation may not be the essential feature of life. 

1 The fluctuation at the DNA level may in exceptional cases be stronger than the Brownian 
movement; the information of DNA would then be comparable to a commander giving orders 
in a noisy environment. The logical circuit may still function although conveying errors with 
certain probability. We are confronted here on the one hand, with an interesting field of ma- 
thematics and, on the other, with important biological problems including cancer origin. 
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At this point we introduce the idea of a q u a s i - e q u i l i b r i u m  c o n d i t i o n :  

(0G)fl. > 0 (1) 

where the variation of the variabies concerning the flux coordinates are frozen 
(suffix fr), and only variations concerning quasi-equilibrium coordinates are taken 
into account. In regard to a membrane, for instance, ~n(Na +) = 0, as n(Na +) is the 
quantity of Na~ and the quantity of the flux coordinate (assuming the presence of a 
sodium pump) but cSn(C1-) ~= 0. Therefore the quasi-equilibrium condition for C1- 
is obtained from equation (1), and the equation of the DONNAN potential is derived as 
purely logical (SuGITA 1957b). 

On the other hand, d n j d t  in dG/dt  must be the rate of change concerning the 
flux coordinate, where G(t) is the value of Gibbs free energy, which is a function of t, 
because G(t) and G(t + &) may respectively correspond to different parts of the 
phase space at t and t + &. Therefore, 

dt = ~ At < cSt (2) 

where & is larger than At but small in macroscopic scale. This quantity can be 
expressed by entropy production. The idea of the frozen equilibrium is important in 
defining free energy and chemical potential of a dynamical system. If we compute the 
partition function of every partial system in quasi-equilibrium, the product of the 
partition function of every partial system may be the partition function of the total 
dynamical system. In this case dt may be determined considering the order of Jidt, 
where Ji is the flux of the flux coordinate i. The reaction coordinate is a kind of flux 
coordinate. If Jilt  becomes negligible, the difference of the quasi-equilibrium state 
from the true equilibrium may also be negligible. Considering thermodynamically we 
have 

dt - -  g l - -  g 2 - -  W - -  D (3) 
- - - >  

where G is Gibbs free energy of the organism, g~ and g2 are respectively the influx and 
outflux of free energy, W is the free energy consumption for doing the work W5 
externally and D is the consumption due to other irreversible processes. W can be 
written in 

W = WL + Wf (4) 

where WL is the outflux of the work and Wf is the internal loss accompanying WL. 
Then 

Wf + D 
T (5) 

is the e n t r o p y p r o d u c t i o n in this organism. The balance of entropy of this 
open system is expressed by 

dS ~ --~ ~ _  Wf d- D 
dt --  sl - - s~  + _ _  -~ T (6) 

where S is the entropy of the organism, sl and s2 are respectively influx and outflux 
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of the entropy flux and -Q~ is the outflow of heat from the organism (SuGITA 1955). 
In the same way we have 

dz 4 -+ 
dt - - Z I - - z ~ - - W L - - Q a  (7) 

-->- 

where g is the heat function (enthalpy) of this organism and Zl and )~ are respectively 
the influx and the outflux of enthalpy of this organism. This equation is important in 
considering the energy balance of an organism. In regard to the external system 
building up the environment of this organism the free energy of the environment may 
be determined by 

d-7 = -g~ + g~ + WL (8) 

Then the free energy of the total system, i. e. the total free energy of this system and 
of its environment, is G + G~. The change of this total free energy is given by 
equations (3) and (8) 

d 
dt (G + Ga) ~ 0 (9) 

coinciding with the ordinary theory of thermodynamics. Equation (3) and its appli- 
cation to biological systems was described by SuoiTa (1954). 

APPENDIX II 

M a x i m u m  P r i n c i p l e  

A generally accepted opinion states that in a living system several quantities 
may reach a maximum value. SUCITA (1953) has pointed out that the absolute value 
of (9), i. e. 

dG _~_ _{_ _d~ (9') 

may assume the maximum value and that such a principle might be an extension of 
thermodynamics; however, he has now changed his opinion. If such a principle holds 
true, it must be a result of natural selection or a similar biological principle and cannot 
be a simple extension of a principle of physics. In transient phenomena the possibility 
of complex growth of small entropy or of large free energy, promoting rates of 
transition, arises. For example, the activated complex of a rate process with consider- 
able energy of activation promotes the chemical reaction rate; according to VOLM~I~ 
(1938) crystal growth does not necessarily tend to the state of minimum free energy. 
Therefore an ordinary crystal has more free energy than one in thermodynamical 
equilibrium; the form with more free energy depends on the conditions of crystal 
growth. The snow flake is not stable; its molecules sublime from the nibs. The mole- 
cules condense again on the flake stem and finally produce a small ice block with small 
amounts of free energy. In the "Institute of Low Temperature Sciences" of the 
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Hokkaido University in Japan, a snow flake in oil has been preserved for a few years 
at low temperature. Without oil it would be impossible, even at low temperature, to 
maintain its crystal form having more free energy or a lower entropy level. VOLMEI~ 
(1938) further mentioned the "Stufenregel", according to which the unstable second 
phase has more free energy than that of the stable one and, being unstable, is formed 
within the first phase, which is in the state of "I21bers&reitung". This is reasonable 
from the view-point of the theory of rate processes. 

A comparison between the history of a snow flake and the history of the 
organisms on the earth reveals interesting analogies. The snow flake may be visualized 
as a metabolic pathway by which the free energy of the supersaturated state is con- 
sumed. In the living organism the state of low entropy or high free energy is generated 
by the metabolic pump. The growth of the low- entropy level is driven by the free 
energy of "Uberschreitung", which may correspond to the nutritive value of the 
organisms. As outlined above the low entropy state of organisms does not contradict 
the thermodynamical principle (SuoITA 1951). 

The author has previously considered that the rate process takes the optimal 
path, by which the maximum rate of free energy utilization may be anticipated in 
order to promote rate processes more efficiently. He considered this to be a new 
principle of thermodynamics and on this basis he tried to explain the phenomena of 
life (SuGITA 1957b). This principle may physically be related to the principle of 
minimum production of entropy of PRIGOGINE or to the maximum principle of 
ONSAG~r,, although there are some logical differences as is well known. The author 
has changed his mind, because there are feedba& systems in which such principles may 
not be valid; this was suggested by DeNBmrI (1952), who showed that there is a 
possibility of permanent oscillation instead of steady flow. Such an oscillation was 
discussed also by SUGITA (1961b). On the other hand, there are important works of 
PRIGOGINE & BALESCU (1955) concerning the non-equilibrium system where the 
principle of minimum production of entropy is not valid. In their treatment non- 
linearity is taken into account. This field of research is so important that further 
development is anticipated. 

In mathematical terms a living organism can be represented by a system of 
simultaneous differential equations of kinetics in the following form 

dni 
d-7 = .5' k~ - -  z kk  (t0) i k 

where •i is the quantity of a substance of the compartment i, Jji is the flux from the 
compartment j to i, and the like is with Jik" Then 

dG dni 
dt - ~ v #(ni ) n i dt (11) 

3G 
where #(ni)  == ~ni (12) 

is the chemical potential of ni in the compartment i. 
In mathematical biology stability and optimization of the metabolic system 

represented by equation (11) are discussed. However, there are two problems to be 
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considered separately. The first one is the problem of non-linearity. In mathematical 
terms a system represented by non-linear differential equations is, in many cases, a 
feedback system; consequently, the differential equation (10) has to be non-linear. 
Thus the discussion based upon the ordinary theory of irreversible thermodynamics, 
taking into account only small deviations from equilibrium, cannot be valid. As was 
already mentioned by EI.SASS~, (1958), a parametric interaction cannot be expected 
in a system with only small deviations from thermodynamical equilibrium. The 
second problem is even more complicated. The fundamental problem to be discussed 
in biology is how to explain the generation of complicated non-linear systems. The 
origin of life as weli as the development of an embryo can only be discussed on the 
basis of a deveiopment of non-linear systems with feedback control. While present- 
day mathematical theories deal adequately with the nature of a given mathematical 
model, the concept of the generation and development of su& a model exceeds the 
scope of existing means. 

APPENDIX III 

I n f o r m a t i o n  t h e o r y  a n d  c y b e r n e t i c s  

Parametric action caused by variation of the throttling factors is very important 
in biology: a large scale system can thus be realized through an adequately processed 
interaction. Within a mechanism of the old type, no "freedom" of information pro- 
cessing is contained; this leads to determinism as one way of thinking (SucITA 1965b). 
Yet the idea of equifinality brings about concepts directly opposed to determinism. 
Transmission of parametric action has to be carried by material like a hormone; it 
therefore requires energy, which, as such, is different from the one needed for response, 
the latter necessarily being larger than the former. From this point of view, infor- 
mation offers its services as a kind of physical action and thus has to have a physical 
background. 

In formal information theory, however, this background is conceptually neglected; 
only the degree of the complexity of the pattern or the time series is discussed. The 
degree of complexity is measured in "bit" units and is called the quantity of infor- 
mation or the negative entropy. The pattern of a signal has to be accompanied by a 
certain meaning; however this very meaning is extracted, and only the frequency of 
the appearance of the pattern is considered as a stochastic process (see also page 86). 
We must not confuse information as a p h y s i c a i  pattern with parametric action, 
and information as the a b s t r a c t idea considered in the information theory. 

The main differences between bio-cybernetics and bio-mathematics are: (1) Cy- 
bernetics is considered essentially as a finite system; otherwise it would hardly be 
possible to construct a simulator having finite elements. (2) The mathematical struc- 
ture of cybernetics confines itself primarily to differential or difference-differential 
equations. Another aspect of cybernetics is the automaton theory (the set of discrete 
states may be a logical function of the pulse input generated by the continuous 
system as well as of those which are the output of other automata) (SucITA t966b). If 
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the use of a simulator is taken into consideration, bio-cybernetics is a far narrower 
viewpoint than bio-mathematics. 

Generally speaking, the scope of cybernetics is as limited as that of information 
theory because any consideration of the background (latent physical possibility) is put 
aside leaving parametric control as the mainly treated problem. Moreover, the idea 
of development or evolution may be an antithesis to a strictly cybernetic concept; it 
certainly is not easy to comprehend a development of the circuit model, whether 
it be a digital or analogue one. Such a limitation could be overcome by use of an 
adequate h y b r i d c o m p u t i n g s y s t e m into which many kinds of models are 
programmed. At a critical stage of computation, the system could change from one 
model to another. In order to formulate a mathematical model, we have to simplify 
the metabolic pathways, whereby some compartments must be grouped together. 

SUMMARY 

1. A differential equation of the kinetics of metabolic systems is formulated 

dni 
dt  - Z J j i - -  5." Jik 

j k 

where ni is the quantity of a metabolite in a compartment i, Jji the infux from 
j to i and Jik the outflux from i to k. 

2. The fluxes Jji or Jik can be described as the product of throttling factor X in- 
tensive factor. The thermodynamical nature of the intensive factor is considered 
and the idea of quasi-equilibrium introduced. 

3. The notion of parametric action is outlined. Rate processes concerned with the 
flexibility of the throttling factor are considered as transmission of information; 
this facilitates an investigation of the parametric interaction or informational 
correlation in chemical reaction systems. 

4. The flexibility of the throttling factor reveals that the equation of kinetics is non- 
linear. Any feedback system has to be represented by such non-linear equations. 

5. There are some cases in which non-linear behaviour may be represented appro- 
ximately by a step-function; therefore, finite theory may be useful in such systems. 

6. Since the limit of applicability of the continuous analysis based on differential 
equations of kinetics is well appreciated, binary functions or parameters are intro- 
duced into the equation of kinetics in order to unify the two types of analysis, 
finite and continuous. A hybrid computing system is used for this purpose. 

7. Kinetics of mRNA and repressor formation is especially considered and an appro- 
priate hybrid system suggested. In simplifying this system the switching circuit 
model proposed previously is obtained. 

8. A mathematical model of cetl differentiation is proposed. A flip-flop circuit is 
assumed, composed of reactions at the genetic and other levels under the influence 
of inducible enzymes. The continuous kinetics in this model cell may function only 
under the control of such a molecular automaton. 

9. A pattern of active (1) or inactive (0) states of DNA (101001.. .)  may be 
superimposed upon the information at the genetic level. Cell differentiation is the 
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most striking and permanently lasting variation of this pattern. In addition, tem- 
poral  variations (repression and induction; open or closed states) which may be 
of physiological significance, are considered. 

10. Energy for parametric action must be distinguished from energy for the response. 
The relation between entropy of activation and negative entropy of information, 
e. g. of DNA,  is discussed. 

11. In the appendices (I to I I I )  thermodynamics of an open system are discussed; a 
thermodynamical function, such as a chemical potential in a dynamical  system, is 
logically defined. Finally, the maximum principle and the importance of cyber- 

netics are discussed. 
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Discussion following the paper by SUGITA 

H~ss: Die yon Herrn SUGITA theoretisch geforderten Schaltmechanismen der epigenetischen 
Ebene k6nnen ihre stoffliche Grundtage in den yon M. Em~N am Max-Plan&-Insfitut flir 
physikalische Chemie in G6ttingen studierten Oberg~ingen zwischen verschiedenen molekutaren 
Zusfiinden yon Makromolekiilen, insbesondere yon Polynukleotiden (N gr~St~er als 100) (Helix- 
coil conformations changes) haben. Der Mechanismus der Bildung yon Wasserstoffbrti&en- 
Bindungen und hydrophoben Wechselwirkungen ist bei solchen Uberggngen kooperativ, das 
heist die Wahrscheinlichkeit des Zustandekommens der Bindungen steigt mit der Zunahme der 
bereirs zustande gekommenen Bindungen. Der Mechanismus hat damit die Eigenschaften eines 
Phasentiberganges und kann in Mikrosekunden ablaufen. Diese Systeme haben daher die F~ihig- 
keit zu Ja- oder Nein-Reaktionen. 

SuoYra : Die geschilderte mathematische Analyse ist nur ph~inomenologisch und muf~ noch dutch 
molekulare Oberlegungen erg~tnzt werden. Eine Zustands~inderung als Phaseniibergang inter- 
essiert mich sebr. Bis jetzt hatte ich die Vorstellung, dat~ der Zustand des Eiweigmolekiils in der 
Umgebung der DNS fiir die Ja-Nein-Reaktion Bedeutung hat. Nach Dr. SIBAT*:~I (Biochemi- 
ker der Universit~t Hiroshima), spielt der altosterische Effekt des Repressors in der SchaIt- 
reaktion elne Rolle. Eine phasenfibergangs~hnliche Zustandsgnderung der MakromoIekiile mut~ 
fiir die mRNS-Synthese beg/instigend wirken. 


