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Abstract The semiterrestrial crab Neohelice (=Chasmag-
nathus) granulata (Dana 1851) is a predominant species in
brackish salt marshes, mangroves and estuaries. Its larvae
are exported towards coastal marine waters. In order to esti-
mate the limits of salinity tolerance constraining larval
retention in estuarine habitats, we exposed in laboratory
experiments freshly hatched zoeae to six diVerent salinities
(5–32‰). At 5‰, the larvae survived for a maximum of
2 weeks, reaching only exceptionally the second zoeal
stage, while 38% survived to the megalopa stage at 10‰.
Shortest development and negligible mortality occurred at
all higher salt concentrations. These observations show that
the larvae of N. granulata can tolerate a retention in the
mesohaline reaches of estuaries, with a lower limit of ca.
10–15‰. Maximum survival at 25‰ suggests that polyha-
line conditions rather than an export to oceanic waters are
optimal for successful larval development of this species. In
another experiment, we tested the capability of the last

zoeal stage (IV) for reimmigration from coastal marine into
brackish waters. Stepwise reductions of salinity during this
stage allowed for moulting to the megalopa at 4–10‰.
Although survival was at these conditions reduced and
development delayed, these results suggest that already the
zoea-IV stage is able to initiate the reimmigration into estu-
aries. After further salinity reduction, megalopae survived
in this experiment for up to >3 weeks in freshwater, without
moulting to juvenile crabs. In a similar experiment starting
from the megalopa stage, successful metamorphosis
occurred at 4–10‰, and juvenile growth continued in fresh-
water. Although these juvenile crabs showed signiWcantly
enhanced mortality and smaller carapace width compared
to a seawater control, our results show that the late larval
and early juvenile stages of N. granulata are well adapted
for successful recruitment in brackish and even limnetic
habitats.
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Introduction

The varunid crab Neohelice granulata (Dana 1851) (=Chas-
magnathus granulata; for recent taxonomic revision, see
Sakai et al. 2006) is a highly dominant component of the
macrofauna in South American salt marshes, estuaries and
mangroves, ranging from northern Patagonia, Argentina,
through Uruguay, to Rio de Janeiro, Brazil (e.g. Boschi
1964; Boschi et al. 1992; RuVino et al. 1994; Bas et al.
2005). Due to its intense burrowing and omnivorous feeding
activities, this abundant semiterrestrial species shapes
regional habitat and community structures in the intertidal
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and supratidal coastal fringe, exerting signiWcant eVects on
sediments, plants, benthic invertebrates, Wsh and migratory
shore birds (Iribarne et al. 2000, 2005; Daleo et al. 2003;
Bortolus et al. 2004; Martinetto et al. 2005, 2007; Botto
et al. 2005, 2006 and earlier papers cited therein).

Tolerating a wide range of salinities from freshwater to
hypersaline conditions, as well as hypoxic conditions,
N. granulata has become a standard model for studies of
physiological and biochemical adaptations to transitional
environments between the sea, freshwater and land (e.g.
Castilho et al. 2001; Luquet et al. 2002; Halperin et al. 2004;
Maciel et al. 2004; de Oliveira et al. 2005; Schein et al.
2005b). Moreover, easy access, suitable size and high-stress
tolerance made this species of crab a frequently used inver-
tebrate model for experimental studies of metabolic physiol-
ogy (e.g. Oliveira et al. 2004; Schein et al. 2005a; Marqueze
et al. 2006), pollution eVects (e.g. Abigail et al. 2003; Mede-
sani et al. 2004a, b; Menone et al. 2004), and of the neuro-
logical and molecular basis of behaviour, learning and
memory (e.g. Delorenzi et al. 2000; Locatelli et al. 2001;
Tomsic et al. 2003; Romano et al. 2006; Oliva et al. 2007).

While the benthic juvenile and adult life-history stages
of N. granulata are adapted to semiterrestrial, brackish,
hypersaline and transitorily occurring freshwater conditions
(e.g. Ituarte et al. 2004; Bas et al. 2007), its planktonic lar-
val stages appear to be unable to survive and develop in the
physically extreme or unpredictable habitats of the adults.
Field observations (Anger et al. 1994) have shown that the
zoeae hatch within the adult habitats (i.e. no reproductive
migrations of ovigerous females occur), preferably at noc-
turnal high tides. OutXowing ebb currents transport the
freshly hatched larvae rapidly towards coastal marine
waters with more stable and, on average, higher salinities,
while the nocturnal timing of hatching may reduce mortal-
ity by pelagic predation, e.g. by visually oriented and
planktivorous estuarine Wsh (Anger et al. 1994).

These are typical patterns of an “export strategy” (Strath-
mann 1982). It represents a life-history adaptation to estua-
rine conditions commonly found in decapod crustaceans and
other benthic invertebrates with complex life cycles (Anger
2001, 2003). This strategy has mostly been explained as a
mechanism allowing for an avoidance of physiologically
stressful hypo-osmotic conditions during the sensitive larval
phase; additionally, it may reduce pelagic predation in estu-
aries (see Morgan 1995, and earlier papers cited therein).
Neohelice granulata may thus be considered as a typical
example, or a model, for an estuarine export strategy.

In order to estimate (1) the limits and potential eVects of
larval retention within brackish habitats of N. granulata, we
compare in the present laboratory study larval survival and
development from hatching through successive zoeal stages
during continuous exposure to six diVerent constant salini-
ties (5–32‰). In another set of experiments, we (2) evalu-

ate the capability of the last zoeal stage (IV) to develop to
the megalopa stage during an experimentally simulated
reimmigration from coastal marine waters to brackish or
freshwater habitats. Finally, we identify (3) the tolerated
limits for megalopal reimmigration, metamorphosis in
brackish water and subsequent juvenile growth in freshwa-
ter, experimentally simulating an exposure to decreasing
salinities beginning after the moult to the megalopa stage.

Materials and methods

Origin of materials, larval rearing

Adult N. granulata were obtained from the intertidal zone
of the brackish coastal lagoon Mar Chiquita, Argentina
(37°44�S; 57°25�W; for habitat characterization, see Spivak
et al. 1994), transported to the Helgoland Marine Biological
Station (Germany), and subsequently maintained under
controlled laboratory conditions at a temperature of
18 § 1°C, a salinity of 32 § 1‰ and an artiWcial 12:12 h
light : dark cycle. Frozen isopods (Idotea spp.), mussels
(Mytilus edulis) and shrimp (Crangon crangon) from the
North Sea were given as food (for further details, see
Gebauer et al. 1998; Giménez 2002).

All larval rearing experiments were run at the same con-
ditions of temperature and light, using Wltered (Orion, mesh
size: 1 �m) seawater from the North Sea (32‰). The
required test salinities were obtained by dilution with
appropriate amounts of desalinated tap water and checked
with a temperature-compensated electric probe (WTW,
Weilheim, Germany) to the nearest 0.1‰. During the
experiments, larvae were reared individually in numbered
glass vials with 30 ml (zoeal stages) or in plastic bowls
with 100 ml water (megalopa and juvenile stages). Larvae
required for experiments with later beginning exposure to
diVerent salinites (from the zoea IV or megalopa stage; see
below), were obtained by mass rearing in unaerated glass
bowls (400 ml, 50 zoeae per bowl) at 32‰ and in otherwise
identical conditions. In the megalopa and juvenile crab
stages, a piece of nylon gauze (0.2 mm mesh size) was pro-
vided as an artiWcial substrate. In daily intervals, water was
changed, the larvae were checked for moults or mortality,
and fresh food was provided (newly hatched San Francisco
Bay Brand Artemia sp. nauplii, »10/ml). The larval stages
were identiWed using the morphological description by
Boschi et al. (1967).

Experiment 1: exposure to diVerent constant salinities 
from hatching

In this experiment, we tested for tolerated salinity limits
allowing for larval retention and successful development in
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estuarine environments, where conspeciWc adult popula-
tions live. Within maximally 12 h after hatching, 300
actively swimming zoea-I larvae from the same hatch were
individually transferred to numbered vials with ca. 30 ml
Wltered seawater. The experimental exposure to six diVerent
test salinities (5, 10, 15, 20, 25, 32‰; initial n = 50 zoeae
per treatment) began either immediately (25, 32‰) or after
stepwise acclimation within maximally 8 h, reducing the
salt concentration from 25‰ in steps of 5‰ every 2 h, until
the Wnal salinity was reached. The condition with a constant
salinity of 32‰ is hereafter referred to as “seawater con-
trol”.

We terminated this experiment already in the megalopa,
because high mortality (caused by a factor other than salin-
ity) occurred in this stage. As a consequence, no statisti-
cally relevant data of survival or development duration
through the megalopa stage became available from this
experiment. Likewise, we excluded from our data a few
exceptional cases occurring at low salinities (three individ-
uals at 10‰, one at 15‰), where zoea-IV larvae developed
to a zoea-V stage and not directly to a megalopa. This
longer developmental pathway in N. granulata was mor-
phologically described by Pestana and Ostrensky (1995),
and factors favouring its occurrence as well as conse-
quences for later larval and juvenile development were
studied in detail by Giménez and Torres (2002), Giménez
and Anger (2003) and Giménez et al. (2004).

Experiments 2 and 3: exposure to decreasing salinities 
from the zoea-IV or megalopa

Although the reimmigration from coastal marine to estua-
rine and oligohaline waters presumably occurs in the
megalopa and/or in early juvenile crab stages, a beginning
of return already in late zoeal stages is also conceivable, as
these stages show mostly demersal behaviour, which may
favour an onshore transport with tidal bottom currents
(Anger 2001). We therefore tested in Experiments 2 and 3
the tolerance of stepwise salinity reductions during both the
zoea-IV and the megalopa stages (for experimental design,
see Table 1).

Experiment 2 was started with 200 mass-reared larvae
(originating from a diVerent hatch than that used for Exp.
1), which reached on the same day the zoea-IV stage. It
comprised a seawater control (constant 32‰; group A) and
three treatments with diVerent schedules of stepwise salin-
ity decrease, allowing for gradual acclimation to hypo-
osmotic conditions including freshwater (groups B–D;
Table 1; n = 50 larvae per group). In these treatments, the
salinities decreased rapidly within 10 days to 8, 6 and 4‰,
respectively, followed by further reduction at slower rates.
The Wnal transfer to freshwater occurred on days 22, 20 and
18, respectively (treatments B, C, D).

Experiment 3 started with 250 mass-reared larvae from
the same hatch that had been used also for Exp. 2, using
only individuals that moulted on the same day from the
zoea-IV to the megalopa. Since almost no mortality
occurred in the individually reared seawater control group
(A) of Exp. 2, and the larvae originated from the same
hatch, we continued to use this group also as a seawater
control (A) in Exp. 3 (initial n = 47 megalopae). Besides

Table 1 Experiments 2, 3, experimental design: timing and extent of
stepwise salinity reductions (B–F, treatments), beginning from the
zoea-IV or megalopa stage, respectively; treatment A (not shown):
constant 32‰ (seawater control)

Experiment 2 
(Zoea IV)

Experiment 3 
(Megalopa)

Salinity (‰) Salinity (‰)

Day/Treatment B C D B C D E F

1 32 25 25 32 32 25 32 32

2 32 20 20 32 25 25 32 32

3 25 20 15 25 25 20 32 32

4 20 15 10 25 20 20 32 32

5 20 15 10 25 20 15 32 32

6 15 10 8 20 15 15 32 32

7 15 10 8 20 15 10 20 32

8 10 8 6 20 15 10 15 32

9 10 8 6 15 10 10 10 10

10 8 6 4 15 10 8 8 6

11 8 6 4 15 10 8 6 4

12 6 4 3 10 8 8 4 2

13 6 4 3 10 8 6 2 1

14 4 3 2 10 8 6 1 0

15 4 3 2 8 6 6 0

16 3 2 1 8 6 4

17 3 2 1 8 6 4

18 2 1 0 6 4 4

19 2 1 6 4 3

20 1 0 6 4 3

21 1 4 3 3

22 0 4 3 2

23 4 3 2

24 3 2 2

25 3 2 1

26 3 2 1

27 2 1 1

28 2 1 0

29 2 1

30 1 0

31 1

32 1

33 0
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this control, the experiment comprised Wve treatments (B–
F) with diVerential rates of decreasing salinity and a Wnal
transfer to freshwater, occurring on days 33, 30, 28, 15 and
14, respectively (Table 1; n = 50 larvae per group). In treat-
ments E and F, we tested if several (8–10) days of initial
development in seawater (32‰), i.e. without an early
occurrence of hypo-osmotic stress, provides the megalopa
with suYcient strength allowing for a rapid subsequent
reimmigration to oligohaline water, reaching freshwater
conditions near metamorphosis to the Wrst juvenile crab
stage.

Besides mortality and development duration, we used in
Experiment 3 juvenile body growth also as an additional
criterion for the evaluation of salinity eVects. Carapace
width (CW) of young crabs was measured to the nearest
0.01 mm under a Leica MZ8 stereomicroscope equipped
with a calibrated eye piece micrometer.

Statistical methods

Statistical analyses following standard techniques (Sokal
and Rohlf 1995) were made using a JMP software package
(Version 5.1.2; SAS Institute Inc., Caly, NC, USA). EVects
of experimental treatments on development duration were
tested using non-parametric one-way ANOVA (Kruskal
Wallis H-tests), as some data did not comply with the pre-
requisites of normality or homogeneity of variance (Kol-
mogorov–Smirnov and Levene test, respectively). A
posteriori comparisons among treatments were carried out
with Student-Newman-Keuls (SNK) tests. An RxC test of
independence was used to analyse eVects of treatments on
mortality (Sokal and Rohlf 1995). Average values are con-
sistently given as arithmetic mean § one standard deviation
(SD).

Results

Experiment 1

When larvae of N. granulata were reared from hatching at
various constant salinities ranging from 5 to 32‰, strong
eVects of osmotic stress on survival were observed at 5 and
10‰, while no or only very little mortality was observed at
all higher salinities (Fig. 1, upper graph). Most of this mor-
tality already occurred during the Wrst zoeal stage, with
86% dying at a salinity of 5‰, and 52% at 10‰. An
enhanced mortality occurred in these two treatments also in
the zoea-II stage, where all remaining zoeae (14%) died at
the lowest salinity, and another 8% at 10‰.

Cumulative rates of zoeal mortality (stages I–IV com-
bined) indicate that a slightly reduced salinity of 25‰ rep-
resents an optimal condition for larval survival to the

megalopa stage (100% survival), while cumulative mortali-
ties of 8–12% occurred at 15, 20 and 32‰. Highest zoeal
mortalities were observed at 5 and 10‰ (100 and 62%,
respectively). In addition, the two lowest salinities allowing
for successful development from hatching through the
zoea-IV stage (10 and 15‰) were the only treatments in
which a long developmental pathway with a zoea-V stage
occurred, although only exceptionally (with three and one
individuals, respectively).

The patterns observed in zoeal development duration
matched those in mortality (Fig. 1). The two lowest salini-
ties (5, 10‰) caused consistently a strong and highly sig-
niWcant developmental delay, while all other conditions
allowed for shorter and generally similar times of develop-
ment through the successive zoeal stages. Interestingly, the
Wrst zoeal stage showed a slight but statistically signiWcant
delay in seawater (32‰) compared to the treatment with
25‰. In the subsequent zoeal stages, however, this diVer-
ence disappeared. In the last zoeal stage (IV), the duration
of development showed a slighly decreasing tendency with
increasing salinity, so that signiWcantly shorter develop-
ment times were observed at 25–32‰ compared to 10–
15‰, and an intermediate value at 20‰.

Fig. 1 N. granulata, Experiment 1. Upper graph: cumulative mortal-
ity (%, initial n = 50) from hatching through zoeal stages I–IV to the
megalopa. Lower graph: development time (days; mean § SD)
through successive zoeal stages. DiVerent letters above columns indi-
cate signiWcant diVerences between salinity treatments
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Experiment 2

When larvae were reared in seawater from hatching until
they reached the zoea-IV stage, and then exposed to various
salinity treatments, the seawater control (larvae remaining
at 32‰, treatment A) allowed for highest survival and
shortest development to the megalopa stage (Fig. 2). In
treatment B, moulting to the megalopa occurred on days 8
and 9 of the experiment, 1 day later than in the seawater
control. Salinity was at that time reduced to 10‰ (Table 1).
This condition allowed for almost equally high survival to
the megalopa as in the seawater control (90% vs. 94%), but
with a signiWcant delay in the time of moulting (Fig. 2).

Treatment C implied a faster reduction of salinity
(Table 1). When moulting to the megalopa stage occurred
(also here on days 8–9), the salinity had decreased to 8‰.
This condition caused both a signiWcant reduction of sur-
vival (64%) and a further delay of development (Fig. 2). In
treatment D, moulting to the megalopa occurred on days 9–
11, when salinity had been reduced to a level of 6–4‰
(Table 1). Survival to the megalopa was in this case
reduced to 60% (not signiWcantly diVerent from treatment
C), while the time of development showed an additional
signiWcant delay (Fig. 2).

Although 60–90% of the larvae in treatments B–D
developed successfully to the megalopa stage, non of these
survivors was subsequently able to pass also through meta-
morphosis to the Wrst juvenile crab stage (Fig. 3). Yet, it is
noteworthy that the megalopae lived in these treatments for
up to 1 month without moulting (maximum: 32 days; treat-
ment B), surviving for up to 24 days in freshwater. In treat-
ments C and D, the time of megalopal survival was clearly
shorter (maximally 26 and 14 days, with up to 15 and
8 days, respectively, in freshwater; Fig. 3), corresponding
with lower survival and delayed development through the
zoea-IV stage. When the last megalopae died, 40 days after
the beginning of the experiment (treatment B), the individ-
uals in the seawater control (A) were already beginning to
moult from the second to the third juvenile crab stage
(Fig. 3). Juvenile growth was followed until the young
crabs in the seawater control were moulting from the Wfth
to the sixth juvenile instar (Fig. 3).

Experiment 3

Metamorphosis from the megalopa to the Wrst juvenile crab
instar began in this experiment on day 14 (treatment C) or
12 (all other groups including the seawater control), while
salinity was reduced to levels between 4 and 10‰
(Table 1). No survival through metamorphosis occurred in
treatment F, where a direct transfer from 32 to 10‰ caused
an immediate and almost complete mortality (day 9,
Fig. 4f). The only survivor in this treatment died on day 14,
after transfer to freshwater. Treatment E was similar to F,
but with a later and then more rapid reduction of salinity. In
this group, two megalopae metamorphosed at 4‰ to Wrst-
stage juveniles; these survived in freshwater to the second
crab instar, but not any further (Fig. 4e).

In treatments B–E, some megalopae survived for
extended periods without reaching metamorphosis. The last
of these individuals died on days 33, 30 and 28, respec-
tively, after transfer to freshwater (Fig. 4). In treatments B
and D, the juvenile crabs showed reduced survival and
delayed development compared to the seawater control (A).
These eVects of salinity stress were conspicuously stronger
in treatments C and E, where development did not proceed
beyond the second crab stage (Fig. 4).

Figure 5 summarizes the mortality patterns in the
megalopa and crab stages I–III. Lowest megalopal mortal-
ity (44%) was observed in the seawater control, slightly
higher values (diVerences statistically insigniWcant) in
treatments B and D, and signiWcantly higher mortalities in
groups C, E and F (with complete mortality in F). When
further survival through the Wrst three juvenile crab instars
is considered, the seawater control represents clearly the
most favourable salinity condition (no juvenile mortality),
followed by treatments B and D; all other conditions (C, E,

Fig. 2 N. granulata, Experiment 2. Upper graph: survival of zoea-IV
larvae to the megalopa stage (%, initial n = 50). Lower graph: develop-
ment time through the zoea-IV stage (days; mean § SD). DiVerent
letters above columns indicate signiWcant diVerences between salinity
treatments
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F) did not allow for juvenile development to the crab-IV
instar.

Comparison of juvenile body size (CW) shows in the
Wrst crab stage a slight but statistically signiWcant diVerence
between the seawater control and treatment B, otherwise
insigniWcant diVerences (Fig. 6). Clear diVerences in CW
were detected in crab stages III and IV, with signiWcantly
larger size reached in the seawater control. Yet, it is
remarkable that treatments B and D allowed for at least
some successful juvenile development and growth during
continuous exposure to freshwater.

Discussion

Our experimental study shows that the larvae of N. granu-
lata tolerate a wide array of estuarine salinity conditions.
After hatching, the zoea-I stage can survive for up to sev-
eral days and, exceptionally, also moult to the second zoeal
stage, at a salinity as low as 5‰ (Fig. 1). This extreme lar-
val euryhalinity is based on an early expression of hyper-
osmoregulatory functions already at hatching (Charmantier
et al. 2002). It provides the Wrst-stage zoeae with suYcient
time to leave oligohaline waters occurring in the adult habi-
tat, using outXowing tidal surface currents (Spivak et al.
1994). Field observations from the brackish lagoon Mar
Chiquita (Anger et al. 1994) suggest that the subsequent
zoeal development to the megalopa stage occurs in this spe-
cies in coastal marine waters, where higher and more stable

salinities prevail. Reimmigration and recruitment to the
adult populations occur in N. granulata during the megal-
opa stage (Luppi et al. 2002).

Interestingly, the patterns of larval dispersal observed
in a physically highly variable natural environment (Anger
et al. 1994) match the ontogenetic patterns of osmoregula-
tion under constant salinity conditions in the laboratory
(Charmantier et al. 2002). Compared to the fairly strong
capability of hyper-osmoregulation in freshly hatched
zoea-I larvae, a signiWcantly weaker capacity was mea-
sured in the zoeal stages II–IV, followed by a substantial
increase in the megalopa stage. In the latter, a strong capa-
bility of hyper-osmoregulation provides the physiological
basis for reimmigration to oligohaline habitats, where
most adult populations of N. granulata live, for instance in
the Mar Chiquita lagoon. A similar correspondence
between developmental changes in salinity tolerance and
osmoregulation was recently observed in the Chinese mit-
ten crab, Eriocheir sinensis (Cieluch et al. 2007). The
match of ecological and physiological data suggests that
larval export strategies of estuarine and some freshwater-
inhabiting species (see Torres et al. 2006) are closely asso-
ciated with a genetically programmed expression pattern
in major osmoregulatory structures and functions. This
includes the formation of ion-transporting tissues as well
as synthesis of a key enzyme, Na+-K+-ATPase, especially
in those developmental stages that are during ontogenetic
migrations exposed to osmotic stress (Cieluch et al. 2007;
Torres et al. 2007).

Fig. 3 N. granulata, Experi-
ment 2, survival (number of 
individuals) in a seawater con-
trol (a, constant 32‰) and three 
treatments with decreasing salin-
ities (b–d; salinity drawn to 
same scale, shown as shaded 
area below dashed line); for 
timing and extent of salinity 
reductions, see Table 1 
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Our data show that successful larval development from
hatching to the megalopa stage is in N. granulata possible
at salinities down to 10‰. SigniWcantly delayed develop-
ment and enhanced mortality, however, suggest that this
condition is near the tolerated lower limit for continuous
larval retention in estuarine habitats. Zoeal survival and
development to the megalopa stage were only little aVected
by salinities ranging from 15 to 32‰, indicating that a
complete export to oceanic waters with full-strength seawa-
ter is not necessary for this species. Rather, maximum sur-
vival at 25‰ suggests that a retention in estuarine
environments with moderately reduced (polyhaline) salini-
ties may be even more favourable for its larval develop-
ment. The tolerance of brackish conditions during the larval
phase should be crucially important for the largest existing
population of this species, which lives in salt marshes along
the Bay of Sanborombón (Argentina), on the southern shore
of the Rio de la Plata estuary. In this population, the larvae
cannot be exported to the open sea, but only to estuarine
waters, where salinities during the reproductive season

(spring and summer) range between 15 and 25‰, both at
the surface and near the bottom (Guerrero et al. 1997).

As another surprising result, our experiments showed
that a limited potential for reimmigration to estuarine envi-
ronments already exists in the last zoeal stage (IV). Suc-
cessful moulting to the megalopa stage occurred at
salinities well below 10‰, and further salinity reductions
down to limnetic conditions did not cause immediate mor-
tality, but still allowed for extended periods of megalopal
survival. Although complete larval development through
metamorphosis was impossible under these extremely
stressful conditions, our observations indicate that the late
larval stages of N. granulata are well adapted to develop
also under brackish conditions. This corroborates our con-
clusion that the larvae of this species may tolerate a limited
retention in estuarine habitats, where moderately reduced or
variable salinities prevail, for instance near the mouth of
the Rio de la Plata estuary (Guerrero et al. 1997).

Compared to the zoea-IV stage, the megalopa of N.
granulata is a very strong osmoregulator (Charmantier

Fig. 4 N. granulata, Experi-
ment 3, survival (number of 
individuals) in a seawater con-
trol (a, constant 32‰) and Wve 
treatments with decreasing salin-
ities (b–f); for further explana-
tions, see Fig. 3, Table 1
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et al. 2002). Our experiments showed that its tolerance of
hypo-osmotic stress was greatly enhanced by gradual accli-
mation to decreasing salinity, especially in treatments
where this process began soon after reaching the megalopa
stage. Successful metamorphosis was under such condi-
tions possible at salinities between 6 and 10‰, and juvenile
development continued even in freshwater. A prolonged
initial development at a favourably high salinity (Exp. 3,
treatments E, F) did not enhance but weaken the tolerance
of subsequent hypo-osmotic stress. When salinity in these
treatments was later reduced only from 32 to 10‰, osmotic
shock caused immediate and almost complete mortality.
This eVect may also explain the surprisingly poor survival
and development in treatment C as compared to D.
Although treatment D implied an earlier transfer to fresh-
water (i.e. a seemingly faster salinity reduction), the earlier
beginning of this reduction may have been less stressful.

The early juvenile stages of N. granulata are even stron-
ger osmoregulators than the megalopa (Charmantier et al.
2002). After gradual acclimation (in our experiments dur-
ing the megalopa stage), this physiological capability
allowed for successful development even in freshwater.
Although crab mortality was in such treatments enhanced
and growth reduced, as compared to the seawater control
(Figs. 5, 6), this is a remarkable degree of euryhalinity.
Together, the high adaptability of the megalopa and early
juvenile crab stages are favourable preconditions for suc-
cessful reimmigration to oligohaline salt marshes, where
semiterrestrial conditions with dangers of desiccation, tidal
seawater intrusions and freshwater inundations after rain-
falls may cause extreme Xuctuations in salinity and other
key factors (Luppi et al. 2002; Bas et al. 2007).

Interestingly, there are also some fully marine popula-
tions of N. granulata, which never face hypo-osmotic con-
ditions, for instance in the Gulf of San Matias, northern
Patagonia (Bas et al. 2005, 2007). Future comparative stud-
ies of separate populations within the broad geographic
range of this species should show if diVerential selective
pressures under diVerent salinity regimes, in concert with
reproductive isolation, has led to shifts in the salinity toler-
ance of the larval and early juvenile stages, or to changes in
their capability for acclimation to hypo-osmotic conditions
(for discussion of metapopulation formation in this species,
see Giménez 2003).

The detection of suitable settlement habitats by the
megalopa is in N. granulata facilitated by a response to
chemical cues from conspeciWc adults (Gebauer et al. 1998,
1999). Metamorphosis-stimulating eVects of odors originat-
ing from the habitats of the adults have been observed also
in other estuarine and freshwater-inhabiting species of crab
(Gebauer et al. 2003; Anger et al. 2006). However, those
cues are likely to co-occur with low or Xuctuating salinities,
which tend to retard rather than stimulate metamorphosis.
Future experimental investigations should therefore con-
sider the combined eVects of potentially metamorphosis-
delaying and accelerating factors (Anger et al. 2006) also.
Such interactions may be involved in the Wne-tuning of
habitat choice, settlement and recruitment processes, and
eventually, aVect the distribution and Wtness of benthic pop-
ulations and communities (Giménez 2003, 2004, 2006).
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Fig. 5 N. granulata, Experiment 3, cumulative mortality from the
beginning of the megalopa stage through juvenile crab stages I–III (%,
initial n = 50 in treatments B–F; n = 47 in seawater control (A). DiVer-
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salinity treatments in megalopal mortality only, those above columns
refer to diVerences in cumulative mortality; for further explanations,
see Fig. 3, Table 1
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