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Abstract In the present study, the distribution and abun-

dance of microphytoplankton were assessed in the south-

western Atlantic Ocean from subtropical to polar waters

(34�–62�S) in two austral springs with contrasting hydro-

graphic conditions. Vertical profiles of open-ocean (ca.

54�W) samples (C 18 L filtered water) were performed in

20 stations (0–100 m) in 1994 and in 17 stations (0–50 m)

in 1995. The latitudinal patterns of microphytoplankton

groups, chlorophyll a, and diatom and silicoflagellate spe-

cies were analyzed and compared with our previous study

carried out in spring 1993 (30�–61�S). In the three springs,

197 diatom species, 173 of which showed mean relative

density lower than 1 %, were identified. A consistent di-

atom biogeographic pattern emerged in the three con-

secutive springs, defining the Transitional (corresponding to

the Brazil–Malvinas Current Confluence), Subantarctic and

Antarctic Zones; and the Subantarctic and Polar Fronts, as

their boundaries. This zonation reflects persistent features

of this hydrographically heterogeneous region. The Polar

Front was a weaker biogeographic boundary for diatom

species than the Subantarctic Front. Interannual changes in

diatoms (mainly in species richness, dominant species and

degree of dominance of species with different ecological

affinities) were detected. The Transitional Zone, which is

one of the most hydrographically variable regions of the

world ocean, showed the highest changes in the diatom

assemblage, reflecting a colder spring in 1995 and a warmer

spring in 1994 than normal (1993). These changes agreed

with differences reported for 1993–1995 in large-scale hy-

drographic conditions, including a widespread diversity

decrease in 1995 due to a weaker influence of subtropical

waters.

Keywords Diatoms � Biogeography � Atlantic �
Brazil–Malvinas Confluence

Introduction

Strong persistent currents along the western boundaries of

the world’s major ocean basins are some of the most

prominent features of ocean circulation (Imawaki et al.

2013).

The southwestern Atlantic Ocean (SWA) encompasses

portions of the eastern shelf of South America and the deep

ocean of one of the most energetic and biologically pro-

ductive oceanic regions of the southern hemisphere

(Combes and Matano 2014a). The SWA is characterized by

two of the largest western boundary currents of the world

ocean that flow in opposite directions: the cool nutrient-

rich Malvinas (=Falklands) Current, which transports sub-

antarctic waters toward the north along the eastern side of
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the Argentine Shelf break, and the warm saline olig-

otrophic Brazil Current, which flows south along the nar-

row Brazilian Shelf (Matano et al. 2010) (Fig. 1). Between

ca. 308 and 46�S, these two currents come in contact with

each other, defining the Brazil–Malvinas Confluence Zone

(BMCZ), a permanent feature characterized by the inter-

leaving and mixture of subantarctic and subtropical waters,

as well as strong mesoscale features, such as thermohaline

fronts, rings, filaments and eddies (Olson et al. 1988;

Peterson and Stramma 1991; Peterson 1992; Willson and

Rees 2000). This zone of complex hydrodynamics and rich

spatial structure (d’Ovidio et al. 2010) is identified as a hot

spot of enhanced phytoplankton diversity (Follows et al.

2007).

Adjacent to the BMCZ is the Argentine Shelf, one of the

world’s largest continental shelves. Both zones are of great

importance due to their ecological and biogeochemical

features (Schloss et al. 2007; d’Ovidio et al. 2010) and

recognized among the richest chlorophyll a areas, accord-

ing to ocean color satellite images (Saraceno et al. 2005;

Rivas et al. 2006).

At latitudes higher than *45�S, the Antarctic Circum-

polar Current (ACC) flows constantly from west to east

connecting three large ocean basins (Pacific, Atlantic and

Fig. 1 General surface circulation pattern in the southwestern

Atlantic Ocean modified from Peterson and Stramma (1991).

Location of sampling stations and biogeographic zonation resulting

from the cluster analyses (UPGMA) based on the diatom (Jaccard’s

index) depth-integrated data for the sites surveyed in November 1994

(cluster illustrated in the adjacent graph). Curves on the right-hand

side of the graph show proportions of warm-water and cold-water

individuals at the latitude of each sampling station (marked by their

number)
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Indian Oceans) (Orsi et al. 1995). The cold and nutrient-

rich water masses of the ACC are characterized by strong

iron limitation, influencing the distribution of marine di-

atom species, in contrast to their northern hemispheric

counterparts, where phytoplankton growth is primarily

limited by nitrate (Cermeño and Falkowski 2009).

The SWA circulation patterns and seawater surface

temperature show temporal variations from subseasonal to

seasonal and interannual scales (Olson et al. 1988; Witter

and Gordon 1999). These variations are strongly influenced

by interactions between the opposing flows of the Brazil

and the Malvinas Currents, which in turn are affected by

the basin-scale wind field and other atmospheric features,

such as the South Atlantic Convergence Zone (Campos

et al. 1999).

The spatial structure of plankton communities in the

SWA is mainly controlled by the circulation of the Brazil

and the Malvinas Currents, by the large confluence zone

between these two currents, and by the permanent and

semipermanent fronts (Peterson 1992; Boltovskoy 1999;

Thompson et al. 1999; Boltovskoy et al. 2000; Thompson

et al. 2001; Olguı́n et al. 2006; Gonçalves-Araujo et al.

2012).

Diatoms are a key component of oceanic systems, re-

sponsible for a great part of the marine primary production

(Werner 1977; Armbrust 2009) and for over half of the

total biogenic silica (Romero and Armand 2010). Because

diatoms are widespread, very abundant and highly diver-

sified, they are successfully used in biogeographic and

paleoceanographic surveys, especially in those focused on

monitoring changes in modern oceanographic conditions

(Smetacek 1985; Ragueneau et al. 2000; Stoermer and

Smol 2001; Romero and Armand 2010). Due to the

prominent role of planktonic diatoms in biogeochemical

cycles, the interpretation of shifts in their abundance and

distribution is relevant for analyses of long-term climate

forcing (Bopp et al. 2005), especially in this circulation

system characterized by very high interannual variability

(Goni and Wainer 2001).

Many studies have considered the distribution of phyto-

plankton or especially diatoms in the Argentine Shelf (e.g.,

Sar et al. 2001; 2002; Almandoz et al. 2007; Olguı́n and

Alder 2011; Sabatini et al. 2012), as well as in some sectors

of the BMCZ (Lange 1985; Lange and Mostajo 1985;

Gayoso and Podestá 1996; Gonçalves-Araujo et al. 2012).

These studies have found a high spatial heterogeneity in both

the abundance and the assemblage structure of diatoms.

The study of the spatial distribution of microphyto-

plankton, particularly of diatoms at macroscale, has re-

ceived less attention in the oceanic region of the SWA to

the north of the Polar Front (Barlow et al. 2002) than in the

southeast Atlantic Ocean (e.g., Froneman et al. 1995; Ey-

naud et al. 1999).

More extensive studies in the oceanic region adjacent to

the Argentine Shelf (including not only the BMCZ) have

examined the structure of phytoplankton assemblages at the

level of major groups and/or different pigments, measured

in situ (Fernandes and Brandini 1999; Brandini et al. 2000;

Marañón et al. 2000; Gibb et al. 2000; Barlow et al. 2002) or

through remote sensing (Sullivan et al. 1993; Saraceno et al.

2005; Romero et al. 2006; d’Ovidio et al. 2010).

Some researchers have pointed out that the poor

resolution at the species level of the phytoplankton com-

munity structure in most oceanic systems is one of the

limitations for modeling advance (e.g., Boyd et al. 2010).

Studies focused on biogeographical aspects of diatom

assemblages at the species level (Hasle 1976; Olguı́n et al.

2006; Cermeño et al. 2008, 2010; Chust et al. 2013) are

insufficient to reflect the high spatial and temporal vari-

ability of this extensive open-ocean region, mainly con-

sidering that, in general, they are based on few samples in

this region.

We have previously highlighted the high proportion of

diatom species with low or very low abundance (Olguı́n

et al. 2006). It has been recently recognized that the species

richness in conventional phytoplankton studies is severely

underestimated (Rodrı́guez-Ramos et al. 2014). Therefore,

a sampling effort appropriate to characterize the species

richness of marine diatoms adequately is required to vali-

date pattern analyses and dataset intercomparisons (Cer-

meño et al. 2014).

The present study, supported by an appropriate sam-

pling, identification and counting effort, takes advantage of

the opportunity to compare microphytoplankton patterns in

three consecutive springs with different hydrographic

conditions.

On the other hand, abrupt changes are observed in the

oceanic circulation of the SWA. Combes and Matano

(2014b) found that these changes are driven by a weak-

ening of the northern branch of the ACC, which translates

to a weakening of the Malvinas Current transport and a

southward BMCZ drift, at a reported rate of 0.62�/decade

between 1993 and 2008. With this perspective, detailed

studies of diatom assemblages will contribute to the com-

parison over time of this changing region.

The aims of our study were to assess the patterns of

abundance and distribution of microphytoplankton groups

along two north–south transects (34�–62�S, ca. 54�W) in

the austral springs (November) of 1994 (diatoms and

silicoflagellates) and 1995 (diatoms, silicoflagellates and

dinoflagellates), to compare the interannual variation in the

biogeographic patterns of diatom species assemblages

(including our previous spring data of 1993), and to in-

terpret the shifts in diatom species assemblages with re-

spect to the large-scale hydrographic conditions reported

for the area during each survey period.

Helgol Mar Res (2015) 69:177–192 179

123



Materials and methods

Microphytoplankton samples were collected along a N–S

transect (34�–60/62�S; 51�–56�W) in the SWA (Figs. 1, 2)

during November 1994 (20 stations) and November 1995

(17 stations), on board the oceanographic vessel ‘‘Ary

Rongel’’, within the framework of a joint Brazilian–Ar-

gentine research program based on chemical and plankton

sampling in the South Atlantic. In 1994, phytoplankton

samples were collected by means of vertical tows

(200–300 L), with a 30-lm-mesh closing net provided with

a flowmeter, covering the following depth layers: 5–0,

15–5, 30–15, 50–30 and 100–50 m. In 1995, phytoplankton

samples were collected (18 L) by casting of Niskin bottles

at four depths (5, 10, 25 and 50 m) followed by filtration

through a 10-lm-mesh gauze. Comparative analyses also

included data obtained in the spring of 1993 (Olguı́n et al.

2006), when phytoplankton samples (20 stations) were

collected as in 1995. All samples were preserved with 5 %

buffered formaldehyde. Diatoms and silicoflagellates were

counted and identified to species level under an inverted

microscope provided with phase contrast. Permanent slides

of oxidized Naprax-mounted materials (Simonsen 1974)

were prepared to aid in the species identification.

The species abundance values of each vertical profile

were depth-integrated (weighted mean) up to 50 m for

Fig. 2 Location of sampling stations and biogeographic zonation

resulting from the cluster analyses (UPGMA) based on the diatom

(Jaccard’s index) depth-integrated data for the sites surveyed in

November 1995 (cluster illustrated in the adjacent graph). Curves on

the right-hand side of the graph show proportions of warm-water and

cold-water individuals at the latitude of each sampling station

(marked by their number)
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interannual comparison purposes. Biogeographic areas

were defined using cluster analyses with the UPGMA

method based on Jaccard’s similarity index.

The difference in the sampling techniques between

1993/1995 (Niskin bottles, 10-lm filtration) and 1994

(30-lm-net tows) introduced some limitations to the

comparison between the distribution patterns in the three

spring periods (e.g., cluster analyses based on presence

data, rather than on absolute or relative abundances;

exclusion of the 1994 dinoflagellate data). Nevertheless,

a specific preliminary assessment of the data considered

showed no detectable bias in association with these

methodological differences. A total of 51 of the 197

diatom species identified had at least one dimension

below 30 lm and thus may have been undersampled in

1994. However, the number of these species in 1994 was

not smaller (41 vs. 49 in 1993 and only 24 in 1995), and

their mean relative abundances showed no significant

differences (ANOVA; P = 0.12). Also, their occurrence

in the different zones, according to their biogeographic

patterns, was not associated with mesh size: the species

expected to occur in the BMCZ were significantly

(ANOVA; P = 0.0002, Tukey’s test) more common

during 1993 (present in 44 % of the samples) and 1994

(39 %) than in 1995 (15 %), whereas their presence in

the samples south of the subantarctic front was similar

for the three surveys (48, 48 and 40 %, respectively).

Therefore, we argue that the differences in the sampling

techniques introduced no detectable bias into the main

findings of our study.

Environmental setting

The Antarctic Circumpolar Current, flowing from west to

east around Antarctica, is the dominant circulation feature

of the Southern Ocean. Through the Drake Passage (be-

tween South America and the Antarctic Peninsula), the

ACC is composed of three major jets: the Subantarctic

Front (SAF), the Polar Front (PF) and the Southern ACC

Front (Combes and Matano 2014a). The Malvinas Current

is formed by the northernmost jet (SAF) and, after leaving

the Drake Passage, flows northward along the continental

slope, until it collides with the poleward flow of the Brazil

Current, thus returning to the south as the Malvinas Return

Flow (Saraceno et al. 2005). The Brazil Current forms near

15�S feeding from the westward flow of the South Equa-

torial Current. After separating from the coast, it splits into

two branches: one retroflecting to the north, where it

generates a recirculation cell, and the other flowing farther

south. The second path of the Brazil Current is much

stronger than the aforementioned redirected path (Combes

and Matano 2014a).

During all the three periods surveyed, the SAF (at ca.

488–50�S) and the PF (558–57�S) appeared as the main

gradients separating zones with different hydrographic

properties (Brandini et al. 2000; Thompson and Alder

2005). North of the SAF, the waters dominated by the

BMCZ presented very variable temperatures (7–20 �C) and

low nutrient concentrations at the surface (B4.9 lM ni-

trates; B0.84 lM phosphates; B2.4 lM silicates).

Between the SAF and the PF, the colder (*5–7 �C) sub-

antarctic waters showed sharp increases in dissolved nu-

trients, especially nitrates (B20 lM), but also phosphates

(B1.8 lM) and silicates (B8 lM). South of the PF, the

waters presented temperatures below 0 �C and highly in-

creased silicate values (*11 lM) (Brandini et al. 2000).

Results and discussion

Distribution of microphytoplankton abundance

and chlorophyll concentration

In 1994 (Fig. 3), diatom abundance varied widely

(1–164,000 cells L-1), with highest values at some stations

of the BMCZ (station 8, *38�S, 5–15 m) and around the

PF (station 20, *57�S, 0–5 m), and showed no correlation

with chlorophyll a concentration (r = 0.05). Silicoflagel-

lates were generally scarce (\1,100 cells L-1), showing

higher values in the vicinity of the PF (stations 17 and 18).

In 1995 (Fig. 4), the maximum diatom abundance

(\14,000 cells L-1), observed in the BMCZ (station 6,

*40�S, Fig. 2), was lower than in 1994, whereas maximum

silicoflagellate abundance, observed around the PF (station

16, *57�S, Fig. 2), was higher (\3,000 cells L-1). Di-

noflagellate abundance was particularly high (36,000 cells

L-1 in the BMCZ, station 8, *44�S) and significantly

correlated in space with chlorophyll a concentration

(r = 0.64; P\ 0.05) in 1995 (Fig. 4). Likewise, their

abundance was very high (\24,000 cells L-1) and corre-

lated in space with chlorophyll a (r = 0.78; P\ 0.05) in

1993 (Olguı́n et al. 2006).

The highest concentrations of planktonic diatoms

assessed in this study were generally lower than those

previously reported for austral oceanic waters in

spring/summer in the SWA: e.g., 6 9 105 cell L-1 for the

BMCZ in September (Gayoso and Podestá 1996) and

3.6 9 106 cell L-1 for subantarctic waters (*shelf break

front) in November (Fernandes and Brandini 1999), as well

as in the southeast Atlantic Ocean: 4.63 9 105 cell L-1

south of the PF in February (Eynaud et al. 1999).

Chlorophyll a (Figs. 3, 4) showed peaks of concentra-

tion in some sectors of the BMCZ (station 9, *40�S, 25 m

in 1994; station 7, *42�S, 10 m in 1995) and south of the

PF (station 22, *60�S, 50 m in 1994; station 19, *62�S,
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25 m in 1995), but not in subantarctic waters (498–55�S),

despite the sharp increase in the concentration of

macronutrients south of the SAF. This spatial pattern was

similar to that reported previously (Podestá 1997; Marañón

et al. 2000; Saraceno et al. 2005; Olguı́n et al. 2006).

Mean chlorophyll a concentration showed non-

significant differences (ANOVA; P[ 0.05) between the

springs of 1994, 1995 and 1993. However, the abundance

of diatoms was significantly lower (ANOVA; P\ 0.01) in

1995 (mean 2,730 cell L-1) than in 1994 (mean

22,411 cell L-1) and 1993 (mean 17,651 cell L-1), sug-

gesting that dinoflagellates and/or groups not considered in

this study, such as nanoplanktonic organisms (\10 lm),

may play an important role in biomass contribution (Mar-

añón et al. 2000; Barlow et al. 2002).

Biogeographic patterns of specific composition

of silicoflagellates and diatoms

Among the four species of silicoflagellates identified, only

Distephanus speculum was abundant, especially in south-

ernmost waters, and widely distributed. Dictyocha messa-

nensis and Distephanus pulchra were more frequent and

abundant in the warm waters of the BMCZ, whereas

Fig. 3 Vertical profiles of chlorophyll a concentrations and cell numbers in November 1994. TZ transitional zone, SAZ subantarctic zone, AZ

Antarctic zone
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Fig. 4 Vertical profiles of chlorophyll a concentrations and cell numbers in November 1995. TZ transitional zone, SAZ subantarctic zone, AZ

Antarctic zone
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Dictyocha mandrai was present throughout the area sur-

veyed (Figs. 5, 6). These distributional trends were similar

in 1994 and 1995 and comparable to those recorded in

1993 (Olguı́n et al. 2006). This concordance suggests a

consistent interannual pattern of the silicoflagellate distri-

bution in the region. Moreover, a similar distribution pat-

tern of the species according to their affinity with water

temperature has been previously documented in the

northwest (Takahashi and Blackwelder 1992) and southeast

Atlantic Oceans (Eynaud et al. 1999).

In the three springs, 197 diatom species were identified

for the whole region studied. Among them, 173 species

(88 %) showed mean relative density lower than 1 % and

may thus be classified as rare (Rodrı́guez-Ramos et al.

2014), and 109 species (55 %) showed mean relative

density lower than 0.1 %. The species richness of diatoms

observed in this SWA region (mean: 146 species per sur-

vey) was higher than that reported (60 taxa) in a similar

transect (34�–57�S) in the southeast Atlantic Ocean in

February (Eynaud et al. 1999).

Cluster analyses (not shown) confirmed that the struc-

ture of the diatom assemblages was governed much more

strongly by the latitudinal gradient than by depth, as shown

in a previous study (Olguı́n et al. 2006). Therefore, the

biogeographic analyses were focused on depth-integrated

abundances.

The biogeographic zonation of transects based on spe-

cies composition of diatoms was similar in the two years

surveyed (Figs. 1, 2). The SAF defined the most important

break, clearly separating a warm-water assemblage to the

north and a cold-water one to the south. North of the SAF,

the Transitional Zone (BMCZ) was subdivided into two

subzones: Northern Transitional (NT) and Southern Tran-

sitional. South of the SAF, the Subantarctic and Antarctic

Zones were identified, both with almost exclusively cold-

water species of diatoms, most of which were common in

subantarctic and antarctic waters (Figs. 5, 6).

The position of the boundaries between biogeographic

zones varied little between years, except for the boundary

between the Subantarctic and Antarctic Zones (environs of

the PF), which was around 53–54�S in 1994 and ca. 56.5�S
in 1995 (Figs. 1, 2).

Diatom species characteristic of the zones and their

relative abundance in the samples are illustrated in Figs. 5

and 6. These species were selected in accordance with our

previous set of criteria on frequency and abundance (Ol-

guı́n et al. 2006). The species consistently present across

most of the transect (widespread) were named ‘‘cos-

mopolitan’’ for the study region.

Most of the diatoms that characterized the transitional

waters of the BMCZ, especially at the northernmost

stations, were warm- and temperate-water species. This

predominance reflects the strong influence of the Brazil

Current, which advects subtropical species into the

BMCZ often as far south as the SAF (Figs. 5, 6). In

1994, warm- and temperate-water species, such as

Chaetoceros contortus and Bacteriastrum hyalinum (fol-

lowed by Bacteriastrum furcatum/delicatulum, Chaeto-

ceros affinis, Pseudo-nitzschia multiseries, etc.) were

particularly abundant in the Transitional Zone (Fig. 5).

However, in 1995, several species usually considered

characteristic of cold waters (Hasle and Syvertsen 1996),

as Corethron criophilum and Fragilariopsis kerguelensis,

but classified as ‘‘cosmopolitan’’ in this spring according

to the aforementioned criterion, were frequent and

abundant in the Transitional Zone. Moreover, species

characteristic of this zone (e.g., B. hyalinum, Lepto-

cylindrus danicus) (Olguı́n et al. 2006) were generally

scarce in 1995 (Fig. 6).

The Subantarctic Zone (located between the SAF and

the PF) was fairly well segregated in the cluster analyses

(Figs. 1, 2). However, very few of the diatom species fitted

the criteria of being characteristic for this zone in 1995

(e.g., Eucampia antarctica, Rhizosolenia simplex, Stepha-

nopyxis turris, Fig. 6) and none of them in 1994 (Fig. 5).

Species frequent in the subantarctic samples were usually

also frequent in antarctic waters (‘‘Subantarctic/Antarctic’’

in Figs. 5, 6).

Therefore, the zonation of the latitudinal transects

showed characteristic species mainly in the extreme

sectors: the Northern Transitional Subzone and the

Antarctic Zone. Each contiguous sector (Southern Tran-

sitional Subzone and Subantarctic Zone) presented

mainly common species with the respective extreme and

only a few or no characteristic species. The species

characteristic of the NT resulted exclusively from the

comparison with the rest of the transect to the south, due

to the lack in both surveys of stations in the Subtropical

Zone (north of the BMCZ). The number of species

characteristic of the NT would be probably fewer as

result of a simultaneous comparison also with the Sub-

tropical Zone, which showed greater species richness and

numerous characteristic species at the site sampled in

1993 (Olguı́n et al. 2006).

‘‘Cosmopolitan’’ species represented a rather small

proportion of the overall species number (around 4–10 %),

but the relative abundance of some of these species was

very high, particularly in 1995 (e.g., Corethron criophilum,

Fragilariopsis kerguelensis, Thalassionema nitzschioides,

Fig. 6).

The PF is considered one of the most characteristic

features of the Southern Ocean, often regarded as one of

the sharpest and best defined biogeographic barriers in the

world ocean (Deacon 1982; Sournia 1994; Eynaud et al.

1999; Boltovskoy et al. 2005). However, the number of

species whose latitudinal distribution ranges were
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Fig. 5 Distribution of a

selected group of diatom species

and of the four silicoflagellates

recorded in the area surveyed in

November 1994. Stations and

their latitude (in decimal

degrees) ordered according to

cluster results (Fig. 1).

‘‘Cosmopolitan’’: widespread in

the study region
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Fig. 6 Distribution of a

selected group of diatom species

and of the four silicoflagellates

recorded in the area surveyed in

November 1995. Stations and

their latitude (in decimal

degrees) ordered according to

cluster results (Fig. 2).

‘‘Cosmopolitan’’: widespread in

the study region
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interrupted either by the PF or by the SAF (expressed as a

percentage of the number of species present on either side

of each front) showed that the PF was a weaker biogeo-

graphic boundary (30–40 % in 1993 to 1995 springs) than

the SAF (*80 % in 1993/1994 and 60 % in 1995). The

SAF showed a sharp decrease in temperature (8–5 �C) and

an increase in silicates ([4 lM). This silicate concentration

is considered a threshold for an optimum development of

cold-water diatom species (Jacques 1989). Likewise, the

SAF is the northern limit of many cold-water diatom spe-

cies in the southeast Atlantic Ocean (Froneman et al.

1995).

These results confirm the relevance of frontal features in

the distribution of diatom species and other plankton

groups in the SWA (Thompson et al. 1999; 2001; Bol-

tovskoy et al. 2000; Thompson and Alder 2005) and in the

southeast Atlantic Ocean (Froneman et al. 1995; Eynaud

et al. 1999; Ward et al. 2003).

Table 1 General information on diatom assemblages recorded in the springs of 1993, 1994 and 1995

1993 1994 1995

Total

Number of species recorded 173 162 103

Mean number and range of species per station 50 (34–86) 51 (31–73) 27 (16–42)

Dominant species (mean relative abundance) F. kerguelensis (20 %) C. contortus (16 %) F. kerguelensis (35 %)

T. nitzschioides (8 %) F. kerguelensis (11 %) C. criophilum (15 %)

F. doliolus (6 %) C. debilis (10 %) T. nitzschioides (7 %)

C. rostratus (5 %) B. hyalinum (6 %) A. hookeri (5 %)

Common species (present in[70 % of the samples) A. tabularis A. tabularis A. tabularis

A. curvatulus A. curvatulus A. curvatulus

C. criophilum C. criophilum A. parvulus

T. nitzschioides C. decipiens F. kerguelensis

F. kerguelensis F. kerguelensis T. nitzschioides

TZ

Mean number and range of species per station 53 (34–87) 57 (27–73) 28 (18–42)

Proportion of cold-water species 16 % 13 % 25 %

Relative cell abundance of cold-water species 8 % 0.9 % 20 %

Relative cell abundance of warm-water species 44 % 89 % 31 %

Dominant species (mean relative abundance) F. doliolus (12 %) C. contortus (38 %) C. criophilum (21 %)

T. nitzschioides (12 %) B. hyalinum (13 %) T. nitzschioides (13 %)

C. rostratus (10 %) P. multiseries (5 %) F. kerguelensis (10 %)

F. kerguelensis (5 %)

SAZ

Mean number and range of species per station 41 (37–50) 36 (31–42) 26 (22–31)

Proportion of cold-water species 51 % 49 % 62 %

Relative cell abundance of cold-water species 68 % 68 % 89 %

Relative cell abundance of warm-water species 1.2 % 4.8 % 0.42 %

Dominant species (mean relative abundance) F. kerguelensis (42 %) F. kerguelensis (37 %) F. kerguelensis (60 %)

C. convolutus (8 %) C. atlanticus (11 %) A. hookeri (7 %)

E. antarctica (7 %) P. lineola (10 %) F. ritscheri (5 %)

AZ

Mean number and range of species per station 48 (40–56) 50 (38–63) 25 (16–32)

Proportion of cold-water species 67 % 62 % 87 %

Relative cell abundance of cold-water species 81 % 58 % 97 %

Relative cell abundance of warm-water species 0.06 % 1.2 % 0 %

Dominant species (mean relative abundance) F. kerguelensis (37 %) C. debilis (32 %) F. kerguelensis (29 %)

C. criophilum (5 %) F. kerguelensis (19 %) A. hookeri (22 %)

P. lineola (5 %) P. lineola (8 %) A. hyalinus (9 %)

P. heimii (5 %)

The biogeographic areas defined are Transitional Zone (TZ), Subantarctic Zone (SAZ) and Antarctic Zone (AZ). Species names in Figs. 5 and 6
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One interesting biogeographic feature of the area sur-

veyed was the presence of isolated patches of water with

diatom assemblages sharply different from those of the

nearby stations. In 1995, stations 1 (at the northernmost

end of the transect) and 6 hosted around 60 % of cold-

water diatoms, whereas stations located nearby, both to the

south and to the north, presented cold-water diatoms below

10 % (Fig. 2). We argue that these anomalies are due to

lateral intrusions of Malvinas Current waters, which shed

eddies or meanders that wander into the BMCZ and

eventually dissipate there (Matano et al. 2010). Such cold

intrusions were also observed in the region in the spring of

1993 (Olguı́n et al. 2006). In 1993, an assemblage

dominated by the warm-water diatom Fragilariosis dolio-

lus was observed in the southern end (41�S) of the BMCZ

(Olguı́n et al. 2006). This association likely indicates the

presence of isolate cells of pure subtropical input shed from

the Brazil Current. The same species dominated a warm

core eddy shed from the Agulhas Return Current observed

in the southeast Atlantic Ocean in the Subtropical Con-

vergence (Froneman et al. 1997).

Interannual changes in diatom assemblage composition

The biogeographic divisions observed in the springs of

1994 and 1995 were very similar and also closely com-

parable to those recorded in the spring of 1993 (Olguı́n

et al. 2006). This zonation, based on diatom assemblages,

was also almost identical to those based on other plankton

organisms, such as foraminifers (Boltovskoy et al. 1996,

2000) and tintinnids recorded in the same samples

(Thompson et al. 1999; Thompson and Alder 2005).

Conversely, differences in species richness and domi-

nant species were evident between the springs of 1994 and

1995 (Table 1). In 1994, 162 species were identified,

ranging between 6 and 59 per sample and between 31 and

73 per station, whereas in 1995, 103 species were identi-

fied, ranging between 8 and 42 per sample and between 16

and 42 per station.

Specific composition of diatoms in each biogeographic

area, especially in the Transitional Zone, differed markedly

between years. Year-to-year variations are partly due to

random differences in the records of the scarce species.

However, even when this bias was taken into account (e.g.,

comparisons based only on the most abundant species),

strong interannual differences were evident.

The similarity of relative species abundance in diatom

assemblages between the three years was analyzed for each

of the three main biogeographic zones (Fig. 7). These in-

terannual similarities were lowest for the Transitional Zone

(where all correlation coefficients approached zero), in-

termediate for the Antarctic Zone and highest for the

Subantarctic Zone. These differences in the interannual

variability of diatom assemblage structure may be associ-

ated with the different degrees of spatiotemporal hetero-

geneity in the hydrographic features of the three main

biogeographic zones. In the Transitional Zone, the

Fig. 7 Similarity values (Pearson correlation index) of relative

species abundance in diatom assemblages for the Transitional,

Subantarctic and Antarctic Zones (mean of samples from each zone)

between the three years. High values indicate little interannual

variation, and vice versa. Analysis based on 65 selected diatom

species (each[ 5 % of the overall assemblage in at least one sample)

Fig. 8 Latitudinal profiles of seawater surface temperature, modified

from Thompson (2004). TZ Transitional Zone, SAZ Subantarctic

Zone, AZ Antarctic Zone
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intervening of warm and cold waters causes multiple

density layers with strong vertical and horizontal gradients

in the euphotic zone (Brandini et al. 2000). Therefore, the

most complex physical structure of this zone (Willson and

Rees 2000; d’Ovidio et al. 2010) likely provides habitat for

various species. In contrast, the persistent oligotrophic

(although nitrate-rich waters) regime of the northern sector

of the Subantarctic Zone has been associated with scarce

diatom abundance, lack of an important spring/summer

bloom (Longhurst 1998; Saraceno et al. 2005) and dom-

inance of nanosized cells (Longhurst 1998).

The interannual variation in the regional circulation

system (Witter and Gordon 1999) introduced large-scale

changes. These differences were particularly evident in the

relative contribution of some warm- and cold-water

dominant species (Table 1). The spring of 1995 was

characterized by the lowest species richness and by the

highest dominance of cold-water diatoms in both species

number and abundance. Chaetoceros contortus, a typically

subtropical/temperate species, was largely dominant

(38 %) in the Transitional Zone in 1994, whereas it was

recorded in only one of the six samples from this zone

Fig. 9 Grouping (UPGMA) of the stations of the three surveys based

on diatom data (Jaccard’s index). Species used (117) are restricted to

those present at levels above 1 % in at least one sample of each

transect. Biogeographic assignments are those indicated in Olguı́n

et al. (2006) and Figs. 1 and 2
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(mean 0.07 %) in 1995. In 1993, Fragilariopsis doliolus, a

subtropical species, was abundant in the Transitional Zone,

whereas in 1995 its contribution decreased. In contrast,

Corethron criophilum, a cosmopolitan species but abun-

dant in antarctic waters (Hasle and Syvertsen 1996), was

much more abundant in 1995 than in the other two years

surveyed (Table 1). Other cold-water diatoms, as

Fragilariopsis kerguelensis, F. ritscheri, Asteromphalus

hookeri, A. parvulus and Thalassiosira gracilis (Figs. 5, 6),

were more abundant in the Transitional Zone in 1995 than

in 1993/1994. The warm/temperate species Chaetoceros

curvisetus, Chaetoceros rostratus and Pseudosolenia cal-

car-avis showed the opposite trend (Figs. 5, 6). Another

remarkable difference was that some typically subtropical

forms, such as Chaetoceros contortus, Fragilariopsis do-

liolus, Hemiaulus hauckii and Planktoniella sol, were

recorded at several stations south of the SAF in 1994

(Fig. 5).

These variations in the structure of diatom assemblages

most probably reflect the large-scale anomalies for the

SWA described between 1993 and 1997, involving: (1) a

southward extension of the Brazil Current in 1994 (as

compared with 1995) (Boebel et al. 1999); (2) a weakening

of the Malvinas Current between 1993 and early 1995,

followed by a strengthening until early 1997 (Witter and

Gordon 1999); and (3) the occurrence of a weak ‘El Niño’

in 1994–1995, followed by a weak ‘La Niña’ in

1995–1996, along the South American and South African

coasts and the Antarctic Peninsula (Gammelsrød et al.

1998; Severov et al. 2004; Vernet et al. 2008), including

the presence of a[100-km-wide band of cold subantarctic

water limited to November 1995 (Thompson and Alder

2005). In accordance with these anomalies, the surface

temperature in most of the BMCZ was 1–5 �C
(mean = 2.3 �C) higher in the spring of 1994 than in the

spring of 1995, whereas surface temperatures southwards

from 49�S were very similar in both periods (Fig. 8).

These events favored a greater southward penetration of

subtropical waters in the Transitional Zone in 1994, which

led to an enhanced presence of subtropical species and a

greater influence of subantarctic/antarctic waters in 1995

and thus to a higher dominance of cold-water diatoms

(Table 1). Interestingly, the mentioned interannual changes

observed in diatom assemblages agree with those described

for the tintinnids recorded in the same samples (Thompson

2004; Thompson and Alder 2005).

Despite the relevant interannual differences in diatom-

specific composition throughout the area surveyed, espe-

cially in its northern sector (Fig. 7), the coupling between

diatom composition and hydrographic setting was consis-

tent enough for some boundaries to persist through time.

This consistency was clearly evident in the analyses of

pooled data (presence of 117 species in the three surveys,

Fig. 9). The samples from the Transitional Zone formed a

homogeneous group, sharply separated from all other sites,

and the boundary between the Transitional and the

Subantarctic Zones was also coincident during the three

springs analyzed. Conversely, the assemblages from the

Subantarctic and Antarctic Zones were much less clearly

defined, both geographically and in species composition.

In summary, the biogeographic zones and their bound-

aries based on diatom assemblages were consistent in the

three consecutive springs, as well as in concordance with

results on other microplankton organisms, thus emerging as

a persistent regional feature. The Polar Front, often re-

garded as one of the sharpest and best defined biogeo-

graphic barriers in the world ocean, was a weaker

biogeographic boundary for diatom species than the

Subantarctic Front in the studied region. Unlike the

Northern Transitional Subzone and the Antarctic Zone, the

Southern Transitional Subzone and the Subantarctic Zone

showed only a few or no characteristic species. Interannual

changes in diatom assemblage structure, especially in the

Transitional Zone, agreed with reported differences in

large-scale hydrographic conditions: The increased effect

of the Brazil Current in the spring of 1994 enhanced the

proportion and dispersion of subtropical species, whereas

the increased effect of the Malvinas Current in the spring of

1995 enhanced the proportion and dispersion of cold-water

species and decreased their diversity.
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