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ORIGINAL ARTICLE

Some Bryozoa species recently 
introduced into the Azores: reproductive 
strategies as a proxy for further spread
J. Micael1*, N. Jardim2, C. Núñez2, A. Occhipinti‑Ambrogi3 and A. C. Costa1

Abstract 

In the marine environment, control of invasive species’ population levels, that is, keeping them at an abundance 
level which is below a density-dependent adverse effect, may be the most attainable goal for the management of 
introduced bryozoans. An improved understanding of reproductive strategies and life history traits is key in order to 
understand the spreading potential. The assessment of the magnitude and temporal dynamics of propagule pres‑
sure from the reproducing population important for the success of control actions and needs is to be determined 
prior to any field intervention. The reproductive cycle of three fouling bryozoans (Bugula neritina, Tricellaria inopinata 
and Virididentula dentata) in the waters of the Azores Archipelago was assessed. The study revealed that although the 
release of larvae can occur throughout the entire year, its intensity and developmental and the attachment success 
of the ancestrula are not even throughout the year and that each species’ reproductive development needs to be 
determine independently. In the light of these findings, it is possible to determine the best time to apply field actions 
aimed at controlling invasive population’s density levels, optimizing the always scarce financial resources for marine 
management.
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Background
Coastal ecosystems around the world are increasingly 
being exposed to a pool of potential non-indigenous 
species (NIS) translocated through a variety of vectors 
[17, 62, 71]. As a consequence, the risk that populations 
of potential invaders establish themselves in recipient 
environments is rapidly increasing [35]. Marine inva-
sive species may create and modify habitats, prey upon 
or outcompete native species, and act as either disease 
agents or vectors, or both. Ultimately, invading species 
are agents of homogenization of the species composition 
of separated communities and can destabilize, at least 
temporarily, ecosystem structure [42].

The impact of NIS introduction is viewed as nega-
tive, namely due to decreases in the economic benefits 

accrued from activities based on marine environments 
and resources such as fisheries, aquaculture, tourism and 
marine infrastructure [8]. For example, the ecological 
and economic damage caused by the sea lamprey (Petro-
myzon marinus) has cost millions of dollars in losses to 
commercial Great Lake fisheries and millions of dollars 
in control programmes [58]. Additionally, people’s wel-
fare may decrease from the reduced quality of their envi-
ronments and natural surroundings. For example, the 
increased frequency of toxic red tides, which threaten 
both public health and marine fisheries, has been partly 
attributed to the worldwide transfer of dinoflagellates 
and their cysts in ships’ ballast tanks [71]. Finally, from 
a conservation viewpoint, the pristine biodiversity of 
invaded ecosystems is threatened by invaders: in the 
Azorean Archipelago, biological invasions are seen as a 
potential factor affecting Marine Protection Areas [1]. 
Other studies (e.g. [8] contend that, in economic and 
social terms, the impacts of an invader may be positive, 
improving aesthetic values, developing new economic 
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activities (e.g. creating commercial and recreational fish-
eries and aquaculture opportunities—[20, 71] and creat-
ing employment for the exploitation of natural resources 
produced by NIS.

The invasiveness and impact of a NIS population are 
not simply a function of its presence, but also of its bio-
logical features, the site-specific environmental condi-
tions and the recipient ecosystem structure [67]. In the 
marine environment, the control or eradication of inva-
sive species is technically and financially difficult [54]. 
Prevention, reducing the risk of introductions, is con-
sidered the most effective management strategy [6, 8, 
60, 92]. However, with the continued movement of craft, 
people and goods, even with a stricter regulation of vec-
tors, some incursions are inevitable [53].

If a marine NIS invader is detected shortly after arrival, 
its eradication may be possible [23], but until the present 
time, only a few cases have been successful (e.g. the alga 
Caulerpa taxifolia in California [4]; the green-lipped 
mussel Perna canaliculus [83] and the dreissenid mussel 
Mytilopsis sallei [7], both in Australia). Failures to eradi-
cate introduced species are far more common (although 
not so well or often documented) (e.g. the ascidian 
Didemnum vexillum or the Asian kelp Undaria pin-
natifida, both in New Zealand [21]; the northern Pacific 
seastar Asterias amurensis [87] and the Pacific oyster 
Crassostrea gigas, both in Tasmania [59]; the alga Caul-
erpa webbiana in the Faial Island of the Azorean Archi-
pelago (Cardigos et al. [15]).

Control of population levels, that is, to keep the species 
at an abundance level which is below a density-depend-
ent adverse effect, or to contain or reduce the spread of 
target organisms, may be a more attainable goal than 
eradication for the management of non-indigenous spe-
cies [31, 43, 60, 79, 92]. There are three main methods 
to keep an introduced species at low levels: (1) physi-
cal and mechanical control, often highly effective but 
labour-intensive [80]; (2) chemical control, sometimes 
effective but often controversial [80] and (3) biological 
control, considered arguable because many introduced 
species’ enemies never become established [88], non-
target impacts occasionally occur [22] or biological con-
trol agents may spread to distant areas where they are 
unwanted [80].

Physical and mechanical controls seem to be the less 
controversial methods and those with less side effects, 
but the effectiveness of control, at a particular point in 
time, is dependent on species features such as the repro-
ductive cycle, which need to be determined prior to any 
field intervention.

As a remote oceanic archipelago, the nine islands of 
the Azores are particularly vulnerable to marine intro-
ductions, especially due to a limited biotic resistance to 

introduced invaders and the characteristic high availabil-
ity of empty niches, as described by Micael et al. [56]. In 
the last decade, several marine invertebrates have been 
reported as being introduced recently into the archipel-
ago [14]: Amathia verticillata (Delle Chiaje, 1822) (Gym-
nolaemata) [3]; Perforatus perforatus (Bruguière, 1789) 
(Thecostraca) [84]; Schizoporella errata (Waters, 1878) 
(Gymnolaemata) [57]; Phorcus sauciatus (Koch, 1845) 
(Gastropoda) [5]. It has been shown, moreover, that the 
non-indigenous marine algal flora of these remote islands 
is double the number known at a global scale (6 vs. 3 % 
non-indigenous macroalgae) [56].

Similarly Souto et  al. [81], following Berning [10], 
observed that the recent increase in bryozoan biodiver-
sity in the waters off Madeira may be linked to two fac-
tors. Firstly, the evolution of taxonomic studies, helped 
by modern investigation methods, has revealed distinct 
species, several being endemic to Madeira. Secondly, the 
monitoring of marinas and harbours for non-indigenous 
species has detected several introduced bryozoans [13, 
89].

Insular marine ecosystems are characterized by envi-
ronmental specificity achieved subsequent to millions of 
years of physical isolation and which comprises, at least 
in part, habitats and species that should be preserved due 
to their uniqueness [56].

The focus of the present study was to provide insights 
into the reproductive strategies of three bryozoan species 
(Bugula neritina, Tricellaria inopinata and Virididentula 
dentata), introduced into the Azores and showing an 
invasive potential to determine the best time of the year 
to apply field management action aimed at reducing their 
population numbers.

Methods
The three target species
Diverse species of Bryozoa are achieving distributions 
that far exceed their inherent dispersal potential [36]. A 
species trait related to the ability to foul and the gener-
alized use of different types of substrata to settle upon, 
together with their abundance and their natural toler-
ance to a broad range of prevailing temperatures, salini-
ties and pollution parameters characteristic of harbours 
and marinas have been identified as fundamental features 
explaining the recent increases in the geographic ranges 
of bryozoans [16, 19, 77, 85].

Records of coastal bryozoans from the Azores date 
from the early 1900s [11, 12, 37]. In 1975, Ctenos-
toma and Cheilostome obtained from the Azores were 
reported upon by d’Hondt [24], and Harmelin [32] 
wrote a thesis on Sur quelques Cribrimorphes (Bryozoa, 
Cheilostomata) de l’Atlantique Oriental including several 
taxa from Azorean coastal waters. In the last 15  years, 
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some field reports and scientific papers have been adding 
bryozoan records to the Azorean marine fauna [3, 30, 57, 
74, 76, 82], Micael et al. in prep.).

In the summer of 2013, a systematic survey was carried 
out in Ponta Delgada Harbour with the aim of studying 
non-indigenous species in the marina there and which 
is mainly used by recreational vessels (Micael et  al. in 
prep.). During this preliminary study, three cheilostome 
erect bryozoan species with potential invasive behaviours 
were identified, mainly due to their abundance in the 
marina (Joana Micael, personal observation):

1.	 Bugula neritina Linnaeus, 1758

Bugula neritina is one of the most common fouling 
organisms worldwide and was considered a cosmopolitan 
species. Recent molecular evidence suggests that B. neri-
tina consists of at least three genetically distinct types of 
colonies along the coasts of the USA [41, 46]. One of the 
colony types (Type S) can be distinguished through two 
mitochondrial (cytochrome c oxidase subunit I [COI] 
and large ribosomal RNA subunit [16S]) and two nuclear 
genes (dynein light chain roadblock type-2 protein 
[DYN] and a voltage-dependent anion-selective channel 
protein [VDAC]) [27]. Type S colonies have an invasive 
behaviour, are globally distributed, including genetic con-
firmation of colonies from Galicia—in the north-eastern 
Atlantic [27], and are considered to have undergone 
widespread introduction as a fouling organism [74]. The 
status of this species cannot in general be defined with 
certainty, pending confirmation from the above ongoing 
research: some authors consider it cryptogenic, while the 
National Exotic Marine and Estuarine Species Informa-
tion System (NEMESIS http://invasions.si.edu/nemesis/
browseDB/SpeciesSummary.jsp?TSN=-95) considers it 
as NIS in the Azores.

In the Azores, B. neritina has only recently (2001) been 
recorded from several islands of the Archipelago [30, 74, 
76, 82]. No attempt has been made to investigate the type 
of colonies collected.

2.	 Tricellaria inopinata d’Hondt and Occhipinti-
Ambrogi, 1985

Although not previously reported upon in the literature, 
the cheilostome T. inopinata, whose origin is considered 
to be the Pacific, has become invasive along Mediterra-
nean and Atlantic coastlines (d’Hondt and Occhipinti-
Ambrogi 1985; Marchini et  al. [47]), and is now well 
established in several marinas of the Azorean Archipel-
ago. Large colonies bearing ovicells with embryos confirm 
that the species has become acclimated to and reproduc-
ing in the Azores (J Micael pers. observation).

As pointed out by Marchini et  al. [47], T. inopinata 
was first recorded, in 1982, from the Venice Lagoon 
in the Adriatic Sea (d’Hondt and Occhipinti-Ambrogi 
1985), and although new to science, it has been consid-
ered introduced from the area where congeneric taxa 
are native. In the Venice Lagoon, it showed an invasive 
behaviour, with the subsequent decline of native bryo-
zoan species. In the Atlantic, the first record dates from 
1998, that is, T. inopinata in Poole Harbour, on the cen-
tral southern coast of England [26], and probably rep-
resenting the initial stage of a range expansion of the 
species along Atlantic coasts, even reaching high lati-
tudes in northern Scotland and Norway [19, 44, 64].

3.	 Virididentula dentata (Lamouroux, 1816)—formerly 
Bugula dentata Lamouroux, 1816 [28].

At present, Virididentula dentata encompasses a com-
plex of species characterized by intraspecific morpho-
logical variation [45, 73] and divergent lineages based 
on COI sequences [28, 45] reported from several locali-
ties around the Australia–New Guinea continent, Brazil, 
Cape Verde, Celebes Sea, Hawaii, Japan, Madeira, Medi-
terranean Sea (Cadiz Bay) and South Africa [12, 40, 45, 
65, 73]. As discussed above for B. neritina, a consensus 
has not yet been reached on establishing the status of 
this species: Cardigos et  al. [14] consider B. dentata as 
cryptogenic.

In the Azores, the species has been recorded from sev-
eral islands of the Archipelago, since 2001 [30, 76, 82].

Field sampling
The Azores Archipelago is located in the North Atlan-
tic between latitudes 36 55′ and 39 43′N and longitudes 
24 46′ and 31 16′W, approximately 1600 km from main-
land Portugal (Fig. 1). At monthly intervals from March 
2014 to February 2015, colonies (N = 15–20) of Bugula 
neritina, Tricellaria inopinata and Virididentula den-
tata were collected randomly (snorkelling at the depth 
of 0–2  m) from the marina of Ponta Delgada (that was 
enlarged in 2008), located on the south coast of São 
Miguel Island (37 44′N; 25 39′W) (Fig. 1).

It has been argued that the size of clonal organisms 
positively correlates with reproductive output [33, 34, 38, 
78]. As such, and following Keough [38], who determined 
that mean size of B. neritina colonies at first reproduc-
tion achieves five bifurcations, our sampling target colo-
nies presented at least five bifurcations (corresponding to 
a minimum of 15 mm in height) and were separated from 
each other by a distance of more than 5 m.

Samples were transported to the laboratory in 
solid, inert, plastic bags filled with local sea water and 
placed within a thermic box. Upon laboratory arrival, 

http://invasions.si.edu/nemesis/browseDB/SpeciesSummary.jsp%3fTSN%3d-95
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samples were cleaned of associated fauna and flora, and 
living specimens were inspected for embryos under a 
light microscope (amplification 10×—Olympus CX41). 
After screening, specimens were preserved in plastic jars 
with 10 % neutral formalin.

Ambient sea water temperature was recorded monthly 
(three measures per month) from 0.5 m below the low-
water mark, using a multi-parameter water quality meter 
probe (Horiba u-50). Measurements were taken in the 
same site as biological samples. Day length (photoperiod) 
data for São Miguel were obtained from Beck [9].

Reproductive cycle
According to Fernández Pulpeiro et al. [29] and Marshall 
et  al. [49], the reproductive development state of each 
bryozoan colony was assessed recording the presence of 
ovicells (brood structures) with embryos, the number of 
ancestrulae and the number of young colonies attached 
to the adult colony, observed under a light microscope.

Statistical analyses
Statistical differences between the percentages of colo-
nies with ovicells with embryos and with ancestrulae 

and young colonies (up to a dozen zooids) throughout 
the year were examined for each species, using one-way 
analysis of variance (ANOVA). The post hoc Tukey’s 
HSD was applied to determine in which months the per-
centages of ovicells with embryos or ancestrulae (plus 
young colonies) were significantly different among each 
other.

Spearman’s rank correlation analysis was used to estab-
lish any relationship between the number of ovicells 
with embryos and ancestrulae plus young colonies and 
between each of these variables and the environmental 
variables (temperature, photoperiod).

Results
Bugula neritina
The number of ovicells with embryos did not differ signif-
icantly throughout the year [ANOVA, F(11, 228) = 1.317, 
p = 0.216]. Nevertheless, in August, 100 % of the colonies 
presented ovicells with embryos (Fig. 2a). Fewer colonies 
with ovicells and embryos were identified in May (70 % of 
the colonies, Fig. 2a).

The number of ancestrulae plus young colonies of B. 
neritina was significantly different throughout the year 

Fig. 1  Sampling study location within the harbour of Ponta Delgada, São Miguel, Azores Archipelago. a Geographic position of the Azores Archi‑
pelago, b the Azores Archipelago, c São Miguel Island and d the recreational marina of Ponta Delgada
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[ANOVA, F(11, 228) = 6.521, p = 0.001]. Fewer recruits 
were identified in April and December (Fig. 2b and Addi-
tional file 1).

A negative correlation (albeit without statistical signifi-
cance) was noted between the number of ovicells with 
embryos and temperature and day length (rs = −0.367, 
p = 0.313, rs = −0.319, p = 0.241, respectively). The cor-
relation between ancestrulae plus young colonies and 
temperature was also negative, but not statistically sig-
nificant (rs = −0.053, p =  0.871), while the correlation 
between ancestrulae plus young colonies and day length 
was positive, but also without statistical significance 
(rs = 0.133, p = 0.681).

Tricellaria inopinata
The number of ovicells with embryos differed signifi-
cantly throughout the year [ANOVA, F(11, 206) = 6.396, 
p =  0.001], being especially higher during the summer 
months in contrast to autumn (Fig.  2 and Additional 
file  1). Fewer colonies with ovicells and embryos (18–
20 % of the colonies, Fig. 2a) were identified in October 
and September.

The number of ancestrulae plus young colonies of T. 
inopinata was significantly different throughout the year 
[ANOVA, F(11, 206) =  2.904, p =  0.001]. Fewer ances-
trulae plus young colonies (Fig. 2b and Additional file 1) 
were identified in October.

Fig. 2  Monthly percentage of colonies with: a ovicells with embryos and b ancestrulae plus young colonies of Bugula neritina, Tricellaria inopinata 
and Virididentula dentata, between March 2014 and February 2015
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The correlation between the number of ovicells with 
embryos or ancestrulae plus young colonies and temper-
ature, although positive, was not significant (rs =  0.468, 
p = 0.125; rs = 0.134, p = 0.677, respectively). Neverthe-
less, there was a significant positive linear relationship 
between the number of ovicells with embryos and day 
length (rs = 0.870, p = 0.001), and the number of ances-
trulae and young colonies and day length (rs  =  0.631, 
p = 0.028).

Virididentula dentata
The number of ovicells with embryos was signifi-
cantly different throughout the year [ANOVA, F(11, 
213) = 2.339, p = 0.01], being higher in May and Septem-
ber (Fig.  2a and Additional file  2). Fewer colonies with 
ovicells and embryos (5 % of the colonies, Fig. 2a) were 
identified in December.

The number of ancestrulae plus young colonies of V. 
dentata in July was almost three times more than in other 
months; ANOVA, F(11, 212) = 6.307, p = 0.001) (Fig. 2b 
and Additional file 1).

Although a positive correlation between the num-
ber of ovicells with embryos and temperature and 
day length was detected, it was not statistically sig-
nificant (rs =  0.264, p =  0.408, rs =  0.506, p =  0.093, 
respectively). Similar results were obtained for ances-
trulae plus young colonies and temperature and day 
length rs  =  0.153, p  =  0.636, rs  =  0.428, p  =  0.165, 
respectively).

The three target species in this study produced ovi-
cells with embryos throughout the year, with a higher 
frequency at the end of the spring and during summer 
(Fig.  2a). Recruitment of ancestrulae was also observed 
throughout the year, with each species producing dif-
ferent recruitment peaks along the course of the year 
(Fig.  2b). Correlation between the number of ovicells 
with embryos and the number of ancestrulae (plus young 
colonies) was only obtained for Tricellaria inopinata 
(rs = 0.796, p = 0.002).

Temperature and photoperiod data are shown in Addi-
tional file 2.

Discussion
Our observations on the reproduction and recruitment 
of the Azorean bryozoans described and discussed herein 
confirm the present and previous records of abundant 
colonies in different locations within the Archipelago, 
making it possible to conclude that the three species, 
after their recent introduction are well established locally. 
Moreover, the potential of the three studied bryozoan 
species to further colonize more coastal stretches of the 
Azores is suggested by the year-round presence of colo-
nies at all stages of development.

Species traits that control geographic range and the 
spreading phase following introduction include larval 
mode, environmental tolerance and the ability to float or 
raft [85]. Currently, over large distances, human-medi-
ated transport may be far more important for dispersal 
than natural methods [16], but at a local scale, their suc-
cess in establishing large populations and further colo-
nizing new habitats can be evaluated in the medium and 
longer term through the study of their biological traits, 
among their reproductive strategies.

The populations of the three species considered in the 
present study are characterized by a constant presence 
of adults capable of continuous reproduction. Embryos 
were observed every month, indicating that the larvae are 
released throughout the year and, thus, settle and pro-
duce new colonies continuously. Nevertheless, seasonal-
ity in the reproductive cycle is worth to be considered, in 
order to optimize control strategies.

Bryozoa typically have short-lived non-feeding larvae 
with limited dispersal capabilities that will usually initi-
ate metamorphosis within a few hours of release [86, 91]. 
Due to anthropogenic dispersal, however, many species 
can be found in subtropical and temperate waters world-
wide [68, 74].

A substantial body of experimental work on the repro-
ductive biology of Bugula neritina has been accumulated 
[48, 50, 90]. According to Keough and Chernoff [39] 
and Keough [38], B. neritina larvae have a short pelagic 
phase (0.5–2  h), suggesting limited natural dispersal. 
These wide-ranging research results encompass differ-
ent aspects of larval, post-settlement and colonial perfor-
mance. Bugula neritina embryos grow about 500 times 
larger, favoured by a placenta-like mechanism [90], while 
the increase factor in other Bryozoa [25] varies between 7 
and 30; in general, the larger the egg, the lesser the nutri-
ent input during the embryonic stage.

Mawatari [51, 52] published two papers dealing with 
the cheilostomes Bugula neritina and Tricellaria occiden-
talis (probably T. inopinata but it may be T. catalinensis), 
respectively. In Bugula, zooids were described as simul-
taneous hermaphrodites performing self-fertilization. 
Mawatari studied embryogenesis, larval structure, lar-
val release and locomotion, as well as larval attachment 
and metamorphosis. He also presented data on the B. 
neritina life cycle throughout the year, including peaks 
of reproduction and larval settlement and the rate of col-
ony growth and maturation. In Tricellaria, zooids were 
said to be non-simultaneous hermaphrodites. Mawatari 
[52] also briefly described oogenesis in T. occidentalis, 
and it is clear from his text and illustrations that oocytes 
develop in pairs in this species.

Observations on the larvae of T. inopinata have shown 
that in still waters, the larvae swim actively for a few 
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hours and tend to attach onto aquaria glass walls where 
settlement occurs within a few minutes [63].

Although some differences have been recorded in the 
timing of preferential reproductive activity by bryozoans 
in Ponta Delgada Harbour, the continuous recruitment 
of larvae and the lack of die back in the winter months 
indicate a potential advantage of the three invasive spe-
cies over native ones (for example, Bugula flabellata and 
Crisia denticulata) that are known from the literature to 
disappear in winter and then re-establish themselves—
creating a yearly cycle, settling only during a short period 
[19, 63, 72]. In Eel Pond (Woods Hole, Massachusetts), 
observations on T. inopinata showed no sign of colony 
regrowth until May and no new colonies until June [36]. 
Differences in the timing of settlement could provide T. 
inopinata with sufficient time to recruit to available sub-
strata and begin growing, preventing other species from 
forming dense aggregations where they had done so 
previously.

The amount of embryos was not, however, constant 
throughout the year during the observations made 
within Ponta Delgada, especially for Tricellaria inopinata 
and Virididentula dentata, these being less during the 
autumn months. The successful attachment of the larva 
in the area near the parent colonies was, moreover, also 
not equal throughout the year, especially for V. dentata 
for which July seems to be particular favourable for lar-
val settlement. This information can allow managers to 
schedule the best time of the year to apply field manage-
ment actions aimed at lowering population numbers of 
invading bryozoan species.

It has been reported that Bugula neritina and other 
erect bryozoans serve as habitats for other smaller NIS 
such as caprellids and isopods [66, 69, 70]. The dynamics 
of each studied population was not found to be related to 
variations in temperature or photoperiod characteristic 
of the geographic area. Instead, it may be related to the 
availability of food, especially for Virididentula dentata, 
since the highest percentage of ancestrulae plus young 
colonies of this species anticipates the months when 
the summer plankton community in the Azores reaches 
its maximum [18]. These factors could also suggest that 
V. dentata may in fact be a native species in the Azores, 
adapted to the regional abiotic/biotic characteristics [55] 
or simply that it is not so well adapted to the point of dis-
playing an invasive behaviour, being more dependent on 
food availability than the other two studied species.

By the time of this study, no serious impacts on other 
species, such as, overgrowing, or serious modifications 
of the benthic community have been observed. Indeed 
the availability of reference community data in the spe-
cific marina under study are scarce, so we can rely only 
on the cursory experience of previous visits to the site. 

Nevertheless, caution is needed in relation to the dynam-
ics of this biological community, as these Bryozoa may 
compete with native species for habitat and food, espe-
cially B. neritina and T. inopinata [2]. Bugula neritina 
may, moreover, affect the mariculture of bivalves, by coat-
ing reproductive structures or the valves of the growing 
cultures [75]. A similar behaviour can be expected from 
T. inopinata as it has been reported to overgrow several 
other species of arborescent bryozoans and various other 
organisms, including mussels, sponges, ascidians and 
barnacles in the Venice Lagoon [61], with the observation 
of a subsequent decline of the native bryozoan species 
[47]. Ecological information on V. dentata is scarce, and 
the status of the species as invasive is not yet established.

The observations on the reproductive status of the 
three species suggest that the propagule pressure from 
the established populations is potentially increasing and 
promote further spread to other localities in the islands 
of the Archipelago of Azores. The observed differences 
in periods of successful reproduction and recruitment 
in the three species examined herein may offer opportu-
nities to focus control and mitigation measures in some 
periods. More generally, the knowledge of each species’ 
reproductive development is important for management 
planning to control the population numbers of invasive 
species. The next research step should consist of the 
determination of the best removal or control strategies 
and the choice of intervention areas.

Authors’ contributions 
JM contributed to all stages of the work; NJ contributed to the acquisition, 
analysis and interpretation of data; CN contributed to the acquisition, analysis 
and interpretation of data; AO contributed to conception, design and revis‑
ing the work critically for important intellectual content; AC contributed to 
conception, design and revising the work critically for important intellectual 
content. All authors’ read and approved the final manuscript.

Author details
1 CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, 
InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, 
9501‑801 Ponta Delgada, Portugal. 2 Departamento de Biologia, Uni‑
versidade dos Açores, 9501‑801 Ponta Delgada, Portugal. 3 Department 
of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio, 14, 
27100 Pavia, Italy. 

Additional files

Additional file 1. Results of the Tukey HSD post-hoc test to discrimi‑
nate significant variations in the presence of ovicells with embryos and 
ancestrulae plus young colonies of the Bryozoa species among months. 
Significance levels are marked with * P < 0.05; ** P < 0.01; and *** P < 
0.001. APR April, AUG August, FEB February, DEC December, MAR March, 
MAY May, JAN January, JUL July, JUN June, NOV November, OCT October, 
SEP September.

Additional file 2. Monthly variation in day length and seawater tempera‑
ture at São Miguel. Seawater temperature data recorded from 0.5 m below 
the low water mark using a multi-parameter water quality meter probe 
(Horiba u-50). Day length at São Miguel was obtained from Beck [9].

http://dx.doi.org/10.1007/s10152-016-0458-1
http://dx.doi.org/10.1007/s10152-016-0458-1


Page 8 of 10Micael et al. Helgol Mar Res  (2016) 70:7 

Acknowledgements
The authors are thankful to Nuno Barata from the Portos dos Açores for allow‑
ing the development of the work within the Ponta Delgada Marina. This pro‑
ject was funded by the Direcção Regional de Ciência e Tecnologia (DRCT)—
‘Açores: Stopover for Marine Alien Species?’—ASMAS—M2.1.2/I/032/2011.

Competing interests
The authors declare that they have no competing interests.

Received: 21 September 2015   Accepted: 3 February 2016

References
	1.	 Abecassis RC, Afonso P, Colaço A, Longnecker N, Clifton J, Schmidt L, San‑

tos RS. Marine conservation in the Azores: evaluating marine protected 
area development in a remote island context. Front Mar Sci. 2015;2:104. 
doi:10.3389/fmars.2015.00104.

	2.	 Aguilar LR, Ugaz LT, Garay JC. Variación estacional de Bugula neritina 
(Bryozoa, Cheilostomata) en las estructuras de cultivo suspendido de 
Argopecten purpuratus en bahía Samanco (Ancash, Perú). Revista cientí‑
fica de la Sociedad Española de Acuicultura. 2014;40:1–10.

	3.	 Amat JN, Tempera F. Zoobotryon verticillatum Delle Chiaje, 1822 (Bryozoa), 
a new occurrence in the archipelago of the Azores (North-eastern Atlan‑
tic). Mar Pollut Bull. 2009;58:761–4.

	4.	 Anderson LWJ. California’s reaction to Caulerpa taxifolia: a model for 
invasive species. Biol Invasions. 2005;7:1003–16.

	5.	 Ávila SP, Madeira P, Rebelo AC, Melo C, Hipólito A, Pombo J, Botelho AZ, 
Cordeiro R. Phorcus sauciatus (Koch, 1845) (Gastropoda: Trochidae) in 
Santa Maria, Azores archipelago: the onset of a biological invasion. J Mol‑
luscan Stud. 2015. doi:10.1093/mollus/eyv012.

	6.	 Bax N, Carlton JT, Mathews-Amos A, Haedrich RL, Howarth FG, Purcell JE, 
Rieser A, Gray A. The control of biological invasions in the world’s oceans. 
Conserv Biol. 2001;15:1234–46.

	7.	 Bax N, Hayes K, Marshall A, Parry D, Thresher R. Man-made marinas as 
sheltered islands for alien marine organisms: establishment and eradica‑
tion of an alien invasive marine species. In: Veitch CR, Clout MN, editors. 
Turning the tide: the eradication of invasive species. Gland, Cambridge: 
IUCN SSC Invasive Species Specialist Group. IUCN [World Conservation 
Union]; 2002. p. 26–39.

	8.	 Bax N, Williamson A, Aguero M, Gonzalez E, Geeves W. Marine invasive 
species: a threat to global biodiversity. Mar Policy. 2003;27:313–23.

	9.	 Beck SD. Insect photoperiodism. New York: Academic; 1968.
	10.	 Berning B. Taxonomic notes on some Cheilostomata (Bryozoa) from 

Madeira. Zootaxa. 2012;3236:36–54.
	11.	 Calvet L. Diagnoses de quelque espéces nouvelles de Bryozoaires Cyclos‑

tomes provenant des campagnes scientifiques accomplies par S. A. S. le 
Prince de Monaco, à bord de la Princesse-Alice (1889–1910). Bulletin de 
l’Institut Océanographicque du Monaco. 1911;8:1–9.

	12.	 Calvet L. Bryozoaires provenant des campagnes scientifiques du Prince 
Albert I de Monaco. Monaco: Resultats des Campagnes Scientifiques; 1931.

	13.	 Canning-Clode J, Fofonoff P, McCann L, Carlton JT, Ruiz G. Marine inva‑
sions on a subtropical island: fouling studies and new records in a recent 
marina on Madeira Island (Eastern Atlantic Ocean). Aquat Invasions. 
2013;8:261–70.

	14.	 Cardigos F, Tempera F, Ávila S, et al. Non-indigenous marine species of the 
Azores. Helgol Mar Res. 2006;60:160–9.

	15.	 Cardigos F, Monteiro J, Fontes J, Parretti P, Serrão Santos R. Fighting Invasions 
in the Marine Realm, a Case Study with Caulerpa webbiana in the Azores. In: 
Canning Çlode J, editor. Biological invasions in changing ecosystems (Ch. 
12). Berlin: Walter de Gruyter GmbH & Co KG; 2015. p. 279–300.

	16.	 Carlton JT. Patterns of transoceanic marine biological invasions in the 
Pacific Ocean. Bull Mar Sci. 1987;41:452–65.

	17.	 Carlton JT. Man’s role in changing the face of the ocean: biological 
invasions and implications for conservation of near-shore environments. 
Conserv Biol. 1989;3:265–73.

	18.	 Colebrook JM. Continuous plankton records: relationships between spe‑
cies of phytoplankton and zooplankton in the seasonal cycle. Mar Biol. 
1984;83:313–23.

	19.	 Cook EJ, Stehlíková J, Beveridge CM, Burrows MT, De Blauwe H, Faasse M. 
Distribution of the invasive bryozoan Tricellaria inopinata in Scotland and 
a review of its European distribution. Aquat Invasions. 2013;8:281–8.

	20.	 Courtney WR Jr, Williams JD. Dispersal of exotic species from aquaculture 
sources, with emphasis on freshwater fishes. In: Rosenfield A, Mann R, 
editors. Dispersal of living organisms into aquatic ecosystems. College 
Park: University of Maryland; 1992. p. 49–82.

	21.	 Coutts ADM, Forrest BM. Development and application of tools for incur‑
sion response: lessons learned from the management of the fouling pest 
Didemnum vexillum. J Exp Mar Biol Ecol. 2007;342:154–62.

	22.	 Cowie R. Invertebrate invasions on Pacific islands and the replacement of 
unique native faunas: a synthesis of the land and freshwater snails. Biol 
Invasions. 2002;3:119–36.

	23.	 Culver CS, Kuris AM. The apparent eradication of a locally established 
introduced marine pest. Biol Invasions. 2000;2:245–53.

	24.	 d’Hondt J-L. Bryozoaires cténostomes et cheilostomes (Cribrimorphes 
et Escharellidae exceptés) provenant des dragages de la campagne 
océanographique Biacores du “Jean-Charcot”. Bull Mus Natl Hist Nat. 
1975;209:553–600.

	25.	 Dyrynda PEJ, King PE. Gametogenesis in placental and non- placental 
ovicellate cheilostome Bryozoa. J Zool. 1983;200:471–92.

	26.	 Dyrynda PJ, Fairall VR, Occhipinti-Ambrogi A, d’Hondt J-L. The distribu‑
tion, origins and taxonomy of Tricellaria inopinata d’Hondt and Occhipinti 
Ambrogi, 1985, an invasive bryozoan new to the Atlantic. J Nat Hist. 
2000;34:1993–2006.

	27.	 Fehlauer-Ale KH, Mackie JA, Lim-Fong GE, Ale E, Pie MR, Waeschenbach 
A. Cryptic species in the cosmopolitan Bugula neritina complex (Bryozoa, 
Cheilostomata). Zool Scr. 2014;43:193–205.

	28.	 Fehlauer-Ale KH, Winston JE, Tilbrook KJ, Nascimento KB, Vieira LM. 
Identifying monophyletic groups within Bugula sensu lato (Bryozoa, 
Buguloidea). Zool Scr. 2015. doi:10.1111/zsc.12103.

	29.	 Fernández Pulpeiro E, Cesar-Aldariz J, Reverter Gil O. Sobre la presencia 
de Tricellaria inopinata d’Hondt and Occhipinti Ambrogi, 1985 (Bryozoa, 
Cheilostomatida) en el litoral gallego (N.O. España). Nova Acta Cientifica 
Compostelana. Bioloxia. 2001;11:207–13.

	30.	 Ferraz RR, Santos V, Vizinho S, Guerreiro V, Cardigos F, Frade P, Tempera 
F, Santos RS. Caracterização Ecológica e Sócio-económica do Sítio de 
Importância Comunitária Costa Nordeste e Ponta do Topo (PTJOR0014) 
e Medidas de Gestão Propostas. Arquivos do DOP: Série Estudos no. 
20/2004, Horta; 2004.

	31.	 Forrest BM, Hopkins GA. Population control to mitigate the spread of 
marine pests: insights from management of the Asian kelp Undaria pin-
natifida and colonial ascidian Didemnum vexillum. Manag Biol Invasion. 
2013;4:317–26.

	32.	 Harmelin JG. Sur Quelques Cribrimorphes (Bryozoa, Cheilostomata) de 
l’Atlantique Oriental. Tethys. 1978;8:173–92.

	33.	 Harvell CD, Grosberg RK. The timing of sexual maturity in clonal organ‑
isms. Ecology. 1988;69:1855–64.

	34.	 Hayward PJ. Preliminary observations on settlement and growth in 
populations of Akyonidium hirsutum (Fleming). In: Larwood GP, Rosen BR, 
editors. Living and fossil Bryozoa. New York: Academic; 1973. p. 107–13.

	35.	 Hopkins GA, Forrest BM, Jiang W, Gardner JPA. Successful eradication of 
a non-indigenous marine bivalve from a subtidal soft-sediment environ‑
ment. J Appl Ecol. 2011;48:424–31.

	36.	 Johnson CH, Winston JE, Woollacott RM. Western Atlantic introduction 
and persistence of the marine bryozoan Tricellaria inopinata. Aquat Inva‑
sions. 2012;7:295–303.

	37.	 Jullien J, Calvet L. Bryozoaires Provenant des Campagnes de l’Hirondelle 
(1886–1888). Résultats des Campagnes Scientifiques Accomplies sur son 
Yacht par Albert 1er Prince Souverain de Monaco. 1903;23:1–188.

	38.	 Keough MJ. Dispersal of the bryozoan Bugula neritina and effects 
of adults on newly metamorphosed juveniles. Mar Ecol Prog Ser. 
1989;57:163–71.

	39.	 Keough MJ, Chernoff H. Dispersal and population variation in the bryo‑
zoan Bugula neritina. Ecology. 1987;68:199–210.

	40.	 Lim G. Bugula (Bryozoa) and their bacterial symbionts: a study in symbio‑
sis, molecular phylogenetics and secondary metabolism. Ph.D. Disserta‑
tion, University of California; 2004.

	41.	 Linneman J, Paulus D, Lim-Fong G, Lopanik NB. Latitudinal Variation of a 
Defensive Symbiosis in the Bugula neritina (Bryozoa) sibling species com‑
plex. PLoS One. 2014;9(10):e108783. doi:10.1371/journal.pone.0108783.

http://dx.doi.org/10.3389/fmars.2015.00104
http://dx.doi.org/10.1093/mollus/eyv012
http://dx.doi.org/10.1111/zsc.12103
http://dx.doi.org/10.1371/journal.pone.0108783


Page 9 of 10Micael et al. Helgol Mar Res  (2016) 70:7 

	42.	 Locke A, Hanson JM. Rapid response to nonindigenous species. 3. A 
proposed framework. Aquat Invasions. 2009;4:259–73.

	43.	 Locke A, Hanson JM, MacNair NG, Smith AH. Rapid response to nonin‑
digenous species. 2. Case studies of invasive tunicates in Prince Edward 
Island. Aquat Invasions. 2009;4:249–58.

	44.	 Lodola A, Savini D, Occhipinti-Ambrogi A. First record of Tricellaria inopi‑
nata (Bryozoa: Candidae) in the harbours of La Spezia and Olbia, Western 
Mediterranean Sea (Italy). Mar Biodivers Rec. 2012;5:e41. doi:10.1017/
S1755267212000309.

	45.	 Mackie JA, Keough MJ, Norman JA, Christidis L. Mitochondrial evidence 
of geographical isolation within Bugula dentata Lamouroux. In: Wyse 
Jackson PN, Buttler CJ, Spencer JME, editors. Bryozoan studies 2001, 
proceedings of 12th international bryozoology association conference, 
Balkema, Lisse, Netherlands, 2002. p. 199–206.

	46.	 Mackie J, Keough M, Christidis L. Invasion patterns inferred from 
cytochrome oxidase I sequences in three bryozoans, Bugula 
neritina, Watersiporas ubtorquata, and Watersipora arcuata. Mar Biol. 
2006;149:285–95.

	47.	 Marchini A, Cunha MR, Occhipinti-Ambrogi A. First observations on 
bryozoans and entoprocts in the Ria de Aveiro (NW Portugal) including 
the first record of the Pacific invasive cheilostome Tricellaria inopinata. 
Mar Ecol. 2007;28:154–60.

	48.	 Marshall DJ, Keough MJ. Offspring size plasticity in response to intraspe‑
cific competition: and adaptive maternal effect across life-history stages. 
Am Nat. 2008;171:225–37.

	49.	 Marshall DJ, Bolton TF, Keough MJ. Offspring size affects the post-metamor‑
phic performance of a colonial marine invertebrate. Ecology. 2003;84:3131–7.

	50.	 Marshall DJ, Allen RM, Crean AJ. The ecological and evolutionary impor‑
tance of maternal effects in the sea. Oceanogr Mar Biol. 2008;46:203–50.

	51.	 Mawatari S. On the natural history of a common fouling bryozoan, Bugula 
neritina (Linnaeus). Misc Rep Res Inst Nat Resour. 1951;20:47–54.

	52.	 Mawatari S. On Tricellaria occidentalis (Trask), one of the fouling bryozoans 
in Japan. Misc Rep Res Inst Nat Resour. 1951;22:9–16.

	53.	 McEnnulty FR, Bax NJ, Schaffelke B, Campbell ML. A review of rapid 
response options for the control of ABWMAC listed introduced marine 
pest species and related taxa in Australian waters, CRIMP Technical 
Report Number 23. Hobart: CSIRO Marine Research; 2001.

	54.	 Meyerson LA, Reaser JK. Biosecurity: moving toward a comprehensive 
approach. Bioscience. 2002;52:593–600.

	55.	 Micael J, Rodrigues AS, Barreto MC, Alves MJ, Jones MB, Costa AC. Alloca‑
tion of nutrients during the reproductive cycle of Ophidiaster ophidianus 
(Echinodermata: Asteroidea). Invertebr Reprod Dev. 2011;55:205–16.

	56.	 Micael J, Parente M, Costa AC. Tracking macroalgae introductions in 
North Atlantic oceanic islands. Helgol Mar Res. 2014;68:209–19.

	57.	 Micael J, Marina J, Costa AC, Occhipinti-Ambrogi A. The non-indig‑
enous Schizoporella errata (Bryozoa: Cheilostomatida) introduced 
into the Azores Archipelago. Mar Biodivers Rec. 2014. doi:10.1017/
S1755267214001298.

	58.	 Mills EL, Leach JH, Carlton JT, Secor CL. Exotic species in the Great Lakes: 
a history of biotic crises and anthropogenic introductions. J Great Lakes 
Res. 1993;19:1–57.

	59.	 Mitchell I, Jones A, Crawford C. Distribution of feral Pacific oysters and 
environmental conditions. Hobart: Marine Research Laboratories-Tasma‑
nian Aquaculture and Fisheries Institute, University of Tasmania; 2000.

	60.	 Myers JH, Simberloff D, Kuris A, Carey J. Eradication revisited: dealing with 
exotic species. Trends Ecol Evol. 2000;15:316–20.

	61.	 Occhipinti-Ambrogi A. The spread of Tricellaria inopinata into the lagoon 
of Venice: an ecological hypothesis. Bulletin Societé Sciences Naturels 
Ouest France Mémoires Hors Série. 1991;1:299–308.

	62.	 Occhipinti-Ambrogi A. Global change and marine communities: alien 
species and climate change. Mar Pollut Bull. 2007;55:342–52.

	63.	 Occhipinti-Ambrogi A, d’Hondt J-L. The invasion ecology of Tricellaria 
inopinata in the lagoon of Venice: morphological notes on larva and 
ancestrula. In: Hayward PJ, Ryland JS, Taylor PD, editors. Biology and 
palaeobiology of bryozoans. Fredensberg: Olsen & Olsen; 1994. p. 139–44.

	64.	 Porter JS, Spencer Jones ME, Kuklinski P, Rouse S. First records of marine 
invasive non-native Bryozoa in Norwegian coastal waters from Bergen to 
Trondheim. Bioinvasions Rec. 2015;4:157–69.

	65.	 Ramalho LV, Muricy G, Taylor PD. Taxonomy and distribution of Bugula 
(Bryozoa: Cheilostomata: Anasca) in Rio de Janeiro state, Brazil. In: 

Moyano HI, Cancino JM, Wyse-Jackson PN, editors. Bryozoan studies 2005. 
Leiden: AA Balkema Publishers; 2005. p. 231–43.

	66.	 Ramalhosa P, Canning-Clode J. The invasive caprellid Caprella scaura 
Templeton, 1836 (Crustacea: Amphipoda: Caprellidae) arrives to Madeira 
Island, Portugal. Bioinvasions Rec. 2015;4:97–102.

	67.	 Rew LJ, Lehnhoff EA, Maxwell BD. Non-indigenous species manage‑
ment using a population prioritization framework. Can J Plant Sci. 
2007;87:1029–36.

	68.	 Rodgers PJ, Woollacott RM. Systematics, variation, and developmental 
instability: analysis of spine patterns in ancestrulae of a common bryo‑
zoan. J Nat Hist. 2006;40:1351–68.

	69.	 Ros M, Guerra-García JM, González-Macías M, Saavedra Á, López-Fe 
CM. Influence of fouling communities on the establishment success of 
alien caprellids (Crustacea: Amphipoda) in Southern Spain. Mar Biol Res. 
2013;9:261–73.

	70.	 Ros M, Guerra-García J, Navarro-Barranco C, Cabezas MP, Vázquez-Luis 
M. The spreading of the non-native caprellid (Crustacea: Amphi‑
poda) Caprella scaura Templeton, 1836 into southern Europe and 
northern Africa: a complicated taxonomic history. Mediterr Mar Sci. 
2014;15:145–55.

	71.	 Ruiz GM, Carlton JT, Hines AH. Global invasions of marine and estuarine 
habitats by non-indigenous species: mechanisms, extent, and conse‑
quences. Am Zool. 1997;37:621–32.

	72.	 Ryland JS. The British species of Bugula (Polyzoa). Proc Zool Soc Lond. 
1960;134:65–105.

	73.	 Ryland JS. Bryozoa in the Great Barrier Reef Province. Proc Int Coral Reef 
Symp. 1974;2:341–8.

	74.	 Ryland JS, Bishop JDD, de Blauwe H, Nagar AE, Minchin D, Wood CA, 
Yunnie ALE. Alien species of Bugula (Bryozoa) along the Atlantic coasts of 
Europe. Aquat Invasions. 2011;6:17–31.

	75.	 Sá FS. O efeito dos organismos incrustantes e sua fauna associada, 
no crescimento do mexilhão Perna perna (Linnaeus, 1758) em 
estruturas de cultivo. Dissertation, Universidade Federal do Espírito 
Santo; 2004.

	76.	 Santos V, Cardigos F, Guerreiro V, Diez C, Vizinho S, Ferraz RR, Tempera F, 
Frade P, Santos RS. Caracterização Ecológica e Sócio-Económica do Sítio 
de Importância Comunitária Costa das Quatro Ribeiras (PTTER0018) e 
Medidas de Gestão Propostas. Arquivos Internos do DOP: Série Estudos 
no. 13/2004, Horta; 2004.

	77.	 Scholz J, Nakajima K, Nishikawa T, Kaselowsky J, Mawatari FS. First dis‑
covery of Bugula stolonifera Ryland, 1960 (Phylum Bryozoa) in Japanese 
waters, as an alien species to the Port of Nagoya. Bull Nagoya Univ Mus. 
2003;19:9–19.

	78.	 Sebens KP. Competition for space: growth rate, reproductive output, and 
escape in size. Am Nat. 1982;120:189–97.

	79.	 Simberloff D. Today Tititiri Matangi, tomorrow the world! Are we aiming 
too low in invasives control? In: Veitch CR, Clout MN, editors. Turning the 
tide: the eradication of invasive species. Gland, Cambridge: IUCN SSC 
Invasive Species Specialist Group, IUCN; 2002. p. 4–12.

	80.	 Simberloff D, Parker IM, Windle PN. Introduced species policy, manage‑
ment, and future research needs. Front Ecol Environ. 2005;3:12–20.

	81.	 Souto J, Kaufmann MJ, Canning-Clode J. New species and new 
records of bryozoans from shallow waters of Madeira Island. Zootaxa. 
2015;3925:581–93.

	82.	 Tempera F, Afonso P, Morato T, Prieto R, Silva M, Cruz A, Gonçalves J, 
Santos RS. Comunidades Biológicas dos Sítios de Interesse Comunitário 
do Canal Faial-Pico. Arquivos do DOP. Série de Relatório Internos, 5. 
Departamento de Oceanografia e Pescas da Universidade dos Açores, 
Horta; 2001.

	83.	 Thresher RE, Kuris AM. Options for managing invasive marine species. Biol 
Invasions. 2004;6:295–300.

	84.	 Torres P, Costa AC, Dionísio MA. New alien barnacles in the Azores and 
some remarks on the invasive potential of Balanidae. Helgol Mar Res. 
2012;66:513–22.

	85.	 Watts PC, Thorpe JP, Taylor PD. Natural and anthropogenic dispersal 
mechanisms in the marine environment: a study using cheilostome 
Bryozoa. Philos Trans R Soc Lond B. 1998;353:453–64.

	86.	 Wendt DE, Woollacott RM. Ontogenies of phototactic behavior and 
metamorphic competence in larvae of three species of Bugula (Bryozoa). 
Invertebr Biol. 1999;118:75–84.

http://dx.doi.org/10.1017/S1755267212000309
http://dx.doi.org/10.1017/S1755267212000309
http://dx.doi.org/10.1017/S1755267214001298
http://dx.doi.org/10.1017/S1755267214001298


Page 10 of 10Micael et al. Helgol Mar Res  (2016) 70:7 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

	87.	 Whitehead J. Derwent Estuary introduced marine and intertidal species: 
review of distribution, issues, recent actions and management options. 
Tasmania: Derwent Estuary Program; 2008.

	88.	 Williamson M. Biological invasions. London: Chapman and Hall; 1996.
	89.	 Wirtz P, Canning-Clode J. The invasive bryozoan Zoobotryon verticillatum 

has arrived at Madeira Island. Aquat Invasions. 2009;4:669–70.
	90.	 Woollacott RM, Zimmer RL. A simplified placenta-like system for the 

transport of extraembryonic nutrients during embryogenesis of Bugula 
neritina (Bryozoa). J Morphol. 1975;147:355–78.

	91.	 Woollacott RM, Pechenik JA, Imbalzano KM. Effects of duration of larval 
swimming period on early colony development in Bugula stolonifera 
(Bryozoa: Cheilostomata). Mar Biol. 1989;102:57–63.

	92.	 Wotton DM, Hewitt CL. Marine biosecurity post-border management: 
developing incursion response systems for New Zealand. N Z J Mar 
Freshw Res. 2004;38:553–9.


	Some Bryozoa species recently introduced into the Azores: reproductive strategies as a proxy for further spread
	Abstract 
	Background
	Methods
	The three target species
	Field sampling
	Reproductive cycle
	Statistical analyses

	Results
	Bugula neritina
	Tricellaria inopinata
	Virididentula dentata

	Discussion
	Authors’ contributions 
	References




