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SHORT COMMUNICATION

Effects of elevated temperature 
and sedimentation on grazing rates of the green 
sea urchin: implications for kelp forests exposed 
to increased sedimentation with climate change
Sarah B. Traiger* 

Abstract 

Sea urchin grazing rates can strongly impact kelp bed persistence. Elevated water temperature associated with cli-
mate change may increase grazing rates; however, these effects may interact with local stressors such as sedimenta-
tion, which may inhibit grazing. In Alaska, glacial melt is increasing with climate change, resulting in higher sedimen-
tation rates, which are often associated with lower grazer abundance and shifts in macroalgal species composition. 
The short-term effects of elevated temperature and sediment on grazing were investigated for the green sea urchin, 
Strongylocentrotus droebachiensis (O.F. Müller, 1776), in Kachemak Bay, Alaska (59° 37′ 45.00″ N, 151° 36′ 38.40″ W) in 
early May 2017. Feeding assays were conducted at ambient temperature (6.9–9.8 °C) and at 13.8–14.6 °C with no sedi-
ment and under a high sediment load. Grazing rates significantly decreased in the presence of sediment, but were 
not significantly affected by temperature. Along with sediment impacts on settlement and post-settlement survival, 
grazing inhibition may contribute to the commonly observed pattern of decreased macroinvertebrate grazer abun-
dance in areas of high sedimentation and increased sedimentation in the future may alter sea urchin grazing in kelp 
forests.
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Introduction
Kelp forests are critical biogenic habitats distributed 
along temperate and polar coasts worldwide that support 
high biodiversity [1]. Sea urchins are frequently the most 
important consumers within kelp forest communities 
and exert top-down control on kelp distribution, abun-
dance, and species composition [2]. Loss of urchin preda-
tors can lead to phase shifts from kelp forests to urchin 
barrens [2], alternative stable states with lower produc-
tivity and structural complexity than kelp forests [3, 4]. 
Once formed, urchin barrens can persist for many dec-
ades due to continued high urchin densities and destruc-
tive grazing inhibiting kelp recovery [5].

Climate change is causing global and local changes in 
physical conditions which may have significant effects on 
sea urchins and their role in shaping kelp forests. Global 
mean sea surface temperature has increased by 1 °C over 
the last century [6] and is projected to continue increas-
ing with continued fossil fuel use [7]. Marine invertebrate 
prey consumption rates are predicted to increase with 
elevated temperature due to increased metabolic rates 
within their thermal tolerance window [8]. Elevated tem-
perature increases consumption rates of some marine 
invertebrates including gastropods [9], sea stars [10], and 
sea urchins [11]. Climate-induced increases in kelp con-
sumption could threaten the persistence of productive 
kelp forests [12], although decreased herbivory and kelp 
recovery has also been observed in response to warm-
ing [13]. Sedimentation rates have increased or are pre-
dicted to increase in several kelp forest systems around 
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the world due to changes in land-use or climate change 
(e.g. New Zealand [14], US Atlantic [15], Europe [16]). At 
high latitudes, glaciers are melting at accelerating rates 
[17], resulting in increased glacial discharge that delivers 
fine sediment to the nearshore environment [18]. As gla-
cial melt increases with increasing air temperatures, the 
amount of sediment deposited in the nearshore environ-
ment could increase, or sediment plumes could spread 
farther, making these high-sediment conditions more 
common in kelp forests. In the Arctic, wind-induced 
water motion during longer ice-free summers has led to 
increased sediment resuspension [19] and erosion rates 
are expected to continue accelerating [20]. Sedimentation 
is an important driver of benthic community structure 
and can limit grazer abundance near points of glacial dis-
charge in Alaska [21] and other high-sediment locations 
[22]. Lower grazer survival and/or grazing rates may con-
tribute to this pattern. Sedimentation can scour tissues of 
invertebrate grazers, and may interfere with movement, 
attachment to substrate, and gas exchange [22]. Some 
macroalgae that are palatable to sea urchins (such as 
Saccharina latissima) persist near points of glacial melt 
despite high sediment loads [21, 23]. Because sedimen-
tation rates are predicted to increase in the nearshore 
environment [15–17, 24], it is important to know how 
sedimentation affects urchin grazing rates to anticipate 
changes in herbivore-plant interactions in the future.

Kelp forest community responses to warming sea tem-
peratures may vary with sediment load. Increased sea 
temperature may interact with local stressors and alter 
top-down effects in kelp forest systems in ways that can-
not be predicted by studying the effects of global or local 
stressors alone. In low sediment areas, increased tem-
perature could result in increased kelp consumption by 
urchins leading to reduced kelp biomass and contribut-
ing to the maintenance of urchin barrens [25–27]. High 
sedimentation may increase urchin energetic costs by 
reducing grazing efficiency or causing urchins to increase 
movement [22]. Temperature and sedimentation may 
have synergistic negative effects on urchins, if grazing 
rates cannot increase to meet metabolic needs in the 
presence of sediment. Although elevated temperature 
and other stressors can affect a wide range of species 
interactions [28] and other aspects of sea urchin popula-
tions such as recruitment and larval survival [29], here I 
focus on sea urchin grazing on kelp. This study investi-
gated the effects of increased temperature and sediment 
load on grazing rates of the green sea urchin, Strongylo-
centrotus droebachiensis in Kachemak Bay, Alaska. The 
experiment tested three hypotheses: (1) grazing rates are 
higher at predicted temperature for the year 2030 (14 °C, 
Hadley and Canadian climate models [30]) than ambi-
ent temperature (6.9–9.8 °C), (2) grazing rates are lower 

under high sediment conditions (1-cm thick layer of fine 
settled sediment) than without sediment, and (3) under 
combined conditions of future temperature and high 
sediment load, grazing rates are higher than those under 
ambient temperature and high sediment load.

Materials and methods
Sample collections
One adult Strongylocentrotus droebachiensis (30–40 mm 
test diameter, 14.95 g mean wet weight ± 0.57 SE, n = 36) 
was used in each treatment. Urchins were collected from 
10-m depth mean lower low water (MLLW) from an 
urchin barren on the northern coast of Kachemak Bay 
(59° 37′ 45.00″ N, 151° 36′ 38.40″ W) on 4/28/2017, trans-
ported to the Kasitsna Bay Laboratory and held in a tank 
with ambient flow-through sea water. While in the hold-
ing tank, urchins were fed Saccharina latissima collected 
from the shallow subtidal (2–3 m) at Kasitsna Bay to sati-
ation each day. Urchins were held in the laboratory for 8, 
14, or 19 days before the first, second, and third runs of 
the experiment, respectively. Urchins were then moved 
to experimental jars (1-L mason jars with mesh-covered 
openings to allow water exchange) and starved, and the 
temperature was gradually increased to 14 °C over 2 days 
in the elevated temperature treatment. Urchins in ambi-
ent temperature treatment were also held in experimental 
jars during this time and were exposed to ambient tem-
perature. This resulted in a starvation period of 2  days 
for urchins in all treatments. At the start of the grazing 
trial, ~ 5 g (4.98 ± 0.12, mean ± SE, n = 72) of S. latissima 
were added to each jar and weighed down with a small 
rock, just before sediment was added. Sediment was 
collected from the shallow subtidal (2–3  m) at Kasitsna 
Bay, dried and sieved to retain fine sediment < 63  µm, 
then 6 g was sprinkled over the top of the jar to distrib-
ute it evenly, forming a 1-cm thick layer (1600 mg cm−2) 
in the bottom of the experimental jar at the start of the 
experiment. This also resulted in a thin film of sediment 
(< 1-mm thick) on the piece of kelp in the jar.

Experimental design
Two temperature levels (ambient [6.9–9.8  °C] and ele-
vated [14  °C]) and two sediment load levels (no sedi-
ment and high (1-cm thick layer)) were manipulated in a 
crossed design for a total of four treatment combinations 
(n = 3 per treatment) during three experimental runs 
(5/6–5/8, 5/12–5/14, and 5/17–5/19/2017). Each treat-
ment had a paired no-urchin control which was used in 
grazing rate calculations. The elevated temperature level 
is approximately 2  °C above the average summer high 
temperature in Kachemak Bay, Alaska (based on average 
temperature during the warmest 24-h period in each year 
from 2002 to 2014 [31]) and is the expected summer high 
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temperature for the year 2030 [32]. The sediment treat-
ments are based on observations of sediment layers on 
rocks at sites downstream of glacial melt (Traiger pers 
obs).

In the first two experimental runs, twelve 1-L 
mason jars were placed in each of two plastic tanks 
(91 × 41 × 38 cm). One tank contained a tank heater set 
at 14  °C for the high temperature treatment, while the 
other tank was the ambient temperature control. Unfil-
tered seawater was pumped into the laboratory from 
Kasitsna Bay, flowed into each tank through one hose 
placed at the center of the tank and flowed out through 
the top of the tank. Three replicates of sediment treat-
ment jars (six mason jars, half with urchins and half 
without urchins) were placed in each tank. For the third 
run, additional heaters became available, so a total of six 
glass tanks (51 × 30 × 25  cm) were used, three of which 
contained a heater, with one replicate of each sediment 
treatment (four mason jars, half of which were no-
urchin controls) in each tank. Jars were randomly posi-
tioned within all aquaria. Sea water flow rates through 
each tank were maintained at approximately 20  mL  s−1 
to allow water circulation throughout the tank, but to 
prevent sediment from dispersing out of the mason 
jars for all experimental runs. One Honest Observer by 
Onset (HOBO) Pendant data logger (Onset Computers, 
Bourne, Massachusetts) was floated at the surface of each 
tank and temperature was recorded hourly. Only five log-
gers were available, so the ambient tank number 5 was 
randomly selected as the tank for which no temperature 
data were collected (Table 1). There were three replicates 
of each of the four treatments (ambient temperature and 
no sediment, ambient temperature and high sediment, 
elevated temperature and no sediment, and elevated tem-
perature and high sediment) per experimental run. The 
jars without urchins are not considered a treatment here 
because those data were used in the calculation of graz-
ing rates.

After each experiment the remaining S. latissima were 
weighed and feeding rates (mg kelp g urchin−1 h−1) 
for each replicate were calculated using the formula: 
F = [(F0 − Ft)-(Fb0 − Fbt)]/WT, where F0 and Ft are the 
start and end kelp weights with an urchin, Fb0 and Fbt are 
the start and end weights of kelp in the paired no-urchin 
control jar, W is the urchin weight, and T is the experi-
ment duration [33].

Statistical analysis
Grazing rates were compared among treatments using 
a linear mixed effects model (lme4 package [34]) in R 
Studio version 1.1.456 [35]. Temperature (levels: ambi-
ent, elevated) and sediment (levels: no sediment, high 
sediment) were fixed factors and tank (10 tanks) nested 

within experimental run (3 runs) was included as a ran-
dom factor. Tank was included in the analysis so that any 
procedural effect of including all replicates within the 
same tanks in the first two runs could be detected. Resid-
uals plots were visually examined for normality and equal 
variance.

Results and discussion
Grazing rates were significantly different between the 
no sediment and high sediment treatments (Table  2, 
F-value = 48.561, P-value < 0.001) and grazing rates were 
89–94% lower in the presence of high sediment (Fig. 1). 
Although there appeared to be a trend toward higher 
grazing rates with elevated temperature within no sedi-
ment treatments, this was not significant and there was 
no significant interaction between the sediment and 
temperature treatments (Table  2). The negative effects 
of sediment likely overpowered any positive effect of 
temperature on grazing rates. With a higher sample 

Table 1  Average temperature (± standard error) in  each 
experimental tank. Only five loggers were available, 
so the ambient tank 5 was randomly selected as the tank 
for which no temperature data were collected

Treatment Average temperature 
(°C) ± standard error

Ambient

 Run 1, Tank 1 6.86 ± 0.02

 Run 2, Tank 3 7.62 ± 0.03

Run 3

 Tank 5 No data

 Tank 6 9.76 ± 0.21

 Tank 7 8.96 ± 0.18

Elevated

 Run 1, Tank 2 14.65 ± 0.06

 Run 2, Tank 4 13.92 ± 0.03

Run 3

 Tank 8 13.89 ± 0.02

 Tank 9 13.75 ± 0.02

 Tank 10 13.85 ± 0.01

Table 2  Results of  a  linear mixed effects model testing 
the  effects of  temperature and  sediment on  sea urchin 
grazing with  tank nested within  experimental run 
as a random factor

Italics indicates significant P-value (α = 0.05)

Source SS MS df F-value P-value

Temperature 7465 7465 1 2.217 0.147

Sediment 163,530 163,530 1 48.561 < 0.001

Temperature: sediment 8087 8087 1 2.401 0.132
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size, a significant interaction between temperature and 
sediment may have been detected. Grazing rates varied 
among experimental runs and the highest grazing rates 
were observed during run 3 in the elevated tempera-
ture, no sediment treatment at 251.7 mg kelp g urchin−1 
48 h−1 (± SE 54.8, n = 3) (Table 3, Additional file 1: Fig-
ure S1). Although urchins were fed to satiation daily until 
the starvation period, the length of time urchins were 
held in the laboratory previous to the start of the experi-
ment may have contributed to the variation in grazing 
rates among experimental runs for the no sediment treat-
ments (Additional file  1: Figure S1). As urchins used in 
later trials were held in the laboratory longer, they had 
longer to recover from the stress of collection and this 
reduced stress may have allowed their grazing to increase 
compared to earlier trials. Grazing rates below zero dur-
ing run 2 for the high sediment treatments indicate 
that kelp in the no-urchin control jars had deteriorated 
over the course of the grazing trial. Temperature varied 
among tanks in the ambient treatments from 6.9 °C (± SE 
0.019, n = 56) to 9.8 °C (± SE 0.209, n = 51) (Table 1) due 
to temperature changes in the flow-through seawater 
source. Temperature of the elevated treatment tanks was 

slightly higher in the first run than the remaining runs 
(14.6 °C ± SE 0.060, n = 56) (Table 1).

There was a significant depression of sea urchin grazing 
under high sediment load. Sea urchins in the high sedi-
ment treatment tended to stay on the sides or top of the 
experimental jars to avoid the settled sediment, which 
apparently prevented them from accessing the kelp, 
which itself was covered with only a thin layer of settled 
sediment. Sea urchins can survive with low food sup-
plies for extended periods [36], and may be able to adapt 
to seasonally or temporarily high sedimentation rates by 
moving to microhabitats with less sediment. Although 
Strongylocentrotus droebachiensis can climb up the stipes 
of some kelps, such as Laminaria digitata [37] to avoid 
sediment, Saccharina latissima in glacially-influenced 
areas have short, flexible stipes and the blade lies pros-
trate along the bottom [38], so climbing onto S. latissima 
would not allow urchins to fully avoid sediment. While 
sediment cover on kelp pieces in this experiment was 
light compared to the bottom of the jar, sediment cover 
on the blades of S. latissima in nature can be substan-
tial, even burying blades [39]. Lower grazer abundance 
is commonly observed in locations with high sedimenta-
tion, including glacial estuaries [21] and rocky intertidal 
and subtidal reefs near mining operations [40]. Sediment 
avoidance and grazing inhibition are potential mecha-
nisms behind this pattern. In Plymouth, UK, experimen-
tal laboratory and field studies found that fine sediment 
inhibited limpet grazing and abundance patterns in the 
rocky intertidal were related to sediment deposition [41]. 
Field transplant experiments have shown that scour-
ing and burial by sediments can cause high mortality of 
adult limpets [42]. Sediment may also limit grazer popu-
lations through negative effects on settlement and early 
life stage survival. For example, sedimentation reduces 
larval settlement and juvenile survival of the New Zea-
land urchin, Evechinus chloroticus [43]. Sedimentation 
in coastal vegetated habitats may increase in the future 
with continued glacial melt [44], increased precipitation 
[45], and soil erosion [24]. If sedimentation increases in 
kelp forests, sea urchin grazing pressure may decrease. 
Changes in macroalgal composition and abundance are 
likely to occur simultaneously with grazing pressure in 
response to increase sediment. In Alaska, kelp diversity is 
typically lower near points of glacial sediment input and 
the sediment-tolerant S. latissima is often the dominant 
kelp species [21, 46, 47]. Although extreme increases in 
sedimentation can result in loss of even this sediment-
tolerant kelp, as in Norway where sediment deposition 
from frequent flooding resulted in the loss of 90% of S. 
latissima forests along the southern coast [48]. Although 
sedimentation affects sea urchin grazing rates, at high 
sedimentation rates the direct effects of sediment on 

Fig. 1  Grazing rates of sea urchins in each treatment. Lines above 
bars show standard error from the linear mixed-effects model, n = 9 
for each treatment combination

Table 3  Variance and  standard deviation associated 
with the random effects

Random effects Variance Standard 
deviation

Tank: experimental run < 0.001 < 0.001

Experimental run 992.6 31.5

Residual 3368.0 58.0
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macroalgae may be more important in affecting macroal-
gal composition and abundance.

In contrast to some previous studies, there was not a 
significant increase in sea urchin grazing rate with ele-
vated temperature. Laboratory and field experiments on 
urchins in the Galapagos Islands found that increased 
temperature resulted in stronger top-down effects on 
algal biomass and sea urchin grazing rates were five times 
higher during the warm season compared to the cold sea-
son [26, 27]. Increased temperature also increases urchin 
grazing rates on seagrass [49]. In a laboratory experiment 
in Australia, only small individuals of the urchin, Helioc-
idaris erythrogramma, were able to increase grazing rates 
to compensate for increased metabolic rate at future pre-
dicted temperature [50]. There are distinct differences 
in consumption rates of kelp recruits by sea urchins and 
herbivorous fish between warm and cool regions in Por-
tugal [51]. In Norway, feed conversion ratios of juvenile 
S. droebachiensis held at 12 and 14  °C were higher than 
those at 6 and 10 °C [52]. However, in a short-term (48-
h) feeding trial using S. droebachiensis from the Gulf of 
Maine, grazing rates were lower at 20  °C than at 13 or 
16.5 °C [53]. Although differences in experimental design 
(i.e. starvation period, temperature, urchin size) make 
comparison of grazing rates to other studies difficult, 
grazing rates in this study seem to be lower than those 
observed in similar short-term lab experiments with S. 
droebachiensis (~ 1–3 g kelp consumed in [53]; 0.8 g kelp 
consumed on average in McKay and Heck [54]). Stron-
gylocentrotus droebachiensis experience higher tempera-
tures at the southern part of their distribution than the 
higher temperature treatment used in this study (14 °C), 
but marine invertebrates like S. droebachiensis are often 
adapted to local temperature regimes [55], so it could still 
be expected that their grazing rates increase at this tem-
perature. The high temperature treatment used here was 
approximately 2  °C above mean summer high tempera-
ture in Kachemak Bay but a maximum temperature of 
13.6 °C was observed in recent years (2002–2014) [31] so 
S. droebachiensis in this area may have started adapting 
to these high temperatures. While there was not a signifi-
cant interaction between elevated temperature and high 
sedimentation on grazing rate in this study, this could 
change with a more extreme temperature increase. There 
was a nonsignificant trend towards higher grazing rate 
at the higher temperature, no sediment treatment, and a 
significant effect of temperature may have been detected 
with higher replication. Grazing rates can also vary with 
season and reproductive status [56], and these factors are 
beyond the scope of this short-term experiment.

While many studies have been conducted to exam-
ine the effects of individual stressors associated with 
climate change on the survival or growth of individual 

species, investigating the impacts of multiple stressors 
on species interactions is critical to determining eco-
system responses [57, 58]. Changes in environmental 
conditions which affect marine invertebrate grazing 
can have cascading effects with consequences for habi-
tat complexity and species abundance and diversity. 
For example, turfing, foliose, or filamentous macroal-
gae, which provide less complex habitat than kelps, can 
persist where the presence of sediments deters grazing 
[59–61]. This study indicates that grazing suppression 
by sedimentation may outweigh temperature-driven 
increases in grazing, at least at the modest tempera-
ture increase examined here, although further study 
with greater replication is needed. While this study was 
short-term, it indicates that even short-term pulses of 
sediment may significantly affect urchin grazing. Sedi-
mentation is a dynamic process that is expected to 
change in many nearshore ecosystems and it is impor-
tant to understand how these changes will interact 
with global changes in temperature to affect the role of 
grazers in coastal vegetated habitats. This study sup-
ports the hypothesis that sedimentation inhibits inver-
tebrate grazing in high-sediment environments where 
macroalgae can persist, and illustrates the importance 
of considering such local stressors in the study of the 
effects of climate change on nearshore systems.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1015​2-019-0526-x.

Additional file 1: Figure S1. Grazing rates of sea urchins in each treat-
ment and experimental run (figure legend). Lines above bars show 
standard error, n = 3 for each treatment in each experimental run. Grazing 
rates below zero during run 2 for the high sediment treatments indicate 
that kelp in the no-urchin control jars had deteriorated over the course of 
the grazing trial.
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