Skip to main content
  • Published:

Zur Mathematik des tierischen Wachstums

On the mathematics of animal growth. III. Testing the Gompertz function as growth formula usingSiliqua patula andThunnus thynnus (Pisces)

III. Testung der Gompertz-Funktion als Wachstumsformel am Beispiel vonSiliqua patula (Bivalvia) undThunnus thynnus (Pisces)

Abstract

The parameters of the Gompertz function, the Bertalanffy function, and the reciprocal function (Krüger, 1962) are calculated for comparison using growth data obtained by Weymouth et al. (1930, 1931) for the razor clam from ten localities and the tuna fish. An new method is employed for the determination of growth parameters under the conditions of linear relations between the power ofe and the linear values of size in the Bertalanffy function and its natural logarithm in the Gompertz function. Both equations may therefore be solved by the well known method of linear regressions analysis. The method delivering optimal parameters for the Bertalanffy and the Gompertz function is described in a methodological chapter. Compared to the other functions the Gompertz delivers the best results for the growth curves of the arctic mussels including an inflection point. For curves without inflection points less good results are obtained. Deviations in the numeration of age are compensated in the Gompertz function by the parameterB. This parameter represents the difference between the natural logarithms of the upper limit size and the size at the age zero (normally corresponding to the size at birth). The parameterC includes the description of the curvature of the growth curve. A disadvantage of the Gompertz function is, that the upper limit of the equation is very near to the highest numbers evaluated and may be exceeded by real observations. A disadvantage of the reciprocal function is that the calculated inflection point does not correspond to the real inflection point. The result obtained for the relationship between length and weight of tuna fish show that the Gompertz function is exactly compatible with the allometric formula. It delivers for the summing up of the allometric formula the same solution as that reached by the reciprocal function. The three formulas employed are of the same structure, differing only in the use of linear numbers, logarithms or powers ofe. They deliver good approximations of growth data, but cannot be regarded as exact solutions for the mathematica description of growth curves.

Zitierte Literatur

  • Bagenal, T. B., 1955. The growth rate of the long rough dabHippoglossoides. J. mar. biol. Ass. U. K.34, 297–311.

    Google Scholar 

  • —, 1955. The growth rate of the long rough dabHippoglossoides platessoides. J. mar. biol. Ass. U. K.34, 643–647.

    Google Scholar 

  • Bertalanffy, L. von, 1934. Untersuchungen über die Gesetzlichkeit des Wachstums. 1. Allgemeine Grundlagen der Theorie. Wilhelm Roux Arch. Entw Mech. Org.131, 613–653.

    Google Scholar 

  • Beyerton, R. J. H. & Holt, S. J., 1957. On the dynamics of exploited fish populations. Fishery Invest., Lond. (Ser. 2)19, 1–533.

    Google Scholar 

  • Dubois, E., 1897. Über die Abhängigkeit des Gehirngewichtes von der Körpergröße. Arch. Anthrop.25, 1–28.

    Google Scholar 

  • Ford, E., 1933. An account of the herring investigations conducted at Plymouth during the years from 1924–1933. J. mar. biol. Ass. U. K.19, 305–384.

    Google Scholar 

  • Gompertz, B., 1985. On the nature of the function expressive of the law of human mortality. Phil. Trans. R. Soc.36, 513–585.

    Google Scholar 

  • Hoeppe, K., 1959. Das reaktionskinetische Grundgesetz auf das Wachstum bezogen und anderen Wachstumsformulierungen gegenübergestellt. Diss., Univ. Gießen, 201 pp.

  • Hohendorf, K., 1966. Eine Diskussion der Bertalanffy-Funktion und ihre Anwendung zur Charakterisierung des Wachstums von Fischen. Kieler Meeresforsch.22, 70–97.

    Google Scholar 

  • Huxley, J. S. & Teissier, G., 1936. Zur Terminologie des relativen Größenwachstums. Biol. Zbl.56, 381–383.

    Google Scholar 

  • Krüger, F., 1962. Über die mathematische Darstellung des tierischen Wachstums. Naturwissenschaften49, 454.

    Google Scholar 

  • —, 1964. Mathematische Ableitung der allometrischen Wachstumsfunktion. Zool. Anz. (Suppl.)27, 249–253.

    Google Scholar 

  • —, 1965. Zur Mathematik tierischen Wachstums. I. Grundlagen einer neuen Wachstumsfunktion. Helgoländer wiss. Meeresunters.12, 78–136.

    Google Scholar 

  • —, 1970. Zum Problem der Allometrie-Summation. Biol. Zbl.89, 65–85.

    Google Scholar 

  • —, 1973. Zur Mathematik tierischen Wachstums. II. Vergleich einiger Wachstumsfunktionen. Helgoländer wiss. Meeresunters.25, 509–550.

    Google Scholar 

  • Pütter, A., 1920. Wachstumsähnlichkeiten. Pflügers Arch. ges. Physiol.180, 298–340.

    Google Scholar 

  • Scharf, J.-H., 1969. Zum Körperlängenwachstumsgesetz der menschlichen Leibesfrucht. Acta anat.73, 10–18.

    Google Scholar 

  • —, 1977. Wachstum. Verh. anat. Ges. Jena71, 29–58.

    Google Scholar 

  • —, Peil, J. & Helwin, H., 1972. Systematische Untersuchungen zur eigentlich nichtlinearen Regression mit Sigmoidfunktionen. Teil I. Theoretische Einflührung. Biometr. Z.14, 387–397.

    Google Scholar 

  • —, Peil, J. & Helwin, H., 1973. Systematische Untersuchungen zur eigentlich nichtlinearen Regression mit Sigmoidfunktionen. Fortsetzung und Schluß. Biometr. Z. 21–46; 179–189.

    Google Scholar 

  • —, Peil, J., 1975. Ein Algorithmus zur Wertebestimmung der Parameter in der Gompertzschen Wachstumsfunktion. Gegenbaurs morph. Jb.121, 389–420.

    Google Scholar 

  • Sella, M., 1929. Migrazioni e habitat del tonno (Thunnus thynnus) studiato col metodo degli ami, con osservationi su l'ascrescimento. Memorie R. Com. talassorg. ital.156, 1–24.

    Google Scholar 

  • Smith, C. A., 1954. Biomathematics. Griffin, London.

    Google Scholar 

  • Snell, O., 1891. Die Abhängigkeit des Gehirngewichtes von dem Körpergewicht und den geistigen Fähigkeiten. Arch. Psychiat. NervKrankh.23, 436–446.

    Google Scholar 

  • Thompson, D'Arey W. 1952. On growth and form. Univ. Press, Cambridge1, 1–464.

    Google Scholar 

  • Wolford, L. A., 1946. A new graphic method of describing the growth of animals Biol. Bull. mar. biol. Lab., Woods Hole90, 141–147.

    Google Scholar 

  • Weymouth, F. W., McMillin, H. C., 1930. The relative growth and mortality of the Pacific razor clam (Siliqua patula), and their bearing on the commercial fishery. Bull. U.S. Fish Commn46, 543–567.

    Google Scholar 

  • ——, Rich, W. H., 1931. Latitude and relative growth in the razor clamSiliqua patula. J. exp. Biol.8, 228–249.

    Google Scholar 

  • Zucker, L. & Zucker, T. F., 1941. A simple time weight relation observed in well nourished rats. J. gen. Physiol.25, 445–463.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krüger, F. Zur Mathematik des tierischen Wachstums. Helgolander Wiss. Meeresunters 31, 499–526 (1978). https://doi.org/10.1007/BF02189497

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02189497