Skip to main content
  • Published:

Influence of initial substratum surface tension on marine micro- and macro-fouling in the Gulf of Thailand

Abstract

The density of five major groups of fouling organisms (bacteria, diatoms, choanoflagellates, ciliates, macroorganisms) on seven artificial substrata with surface tensions between 19.0 and 64.5 mN m−1 was studied in the Gulf of Thailand. Two series of test panels of the different substrata were immersed into the sea between 3 hours and 64 days (macrofauna 128 days). The results show that surface tension has a limited impact on the density of the organisms. Only bacteria settled continuously in significantly lower numbers on materials within the minimum bioadhesive range (20–25 mN m−1) than on other substrata. Significant differences between the substrata may disappear after long exposure, as in series 2 after 16 days. For diatoms and protozoa, a colonisation pattern similar to that of bacteria with a minimum of 20–25 mN m−1 was detected after several exposure intervals. However, it was never recorded in more than 3 exposure intervals in a row. The colonisation pattern of macroorganisms could not be attributed to substratum surface tension. An index, called “colonisation degree” is introduced to give a general impression of the density of organisms on the materials tested. The colonisation degree did not show any significant difference at any exposure interval. The present results clearly suggest that substratum surface tension is easily overshadowed by other factors in colonisation processes under natural conditions. *** DIRECT SUPPORT *** A03B6037 00003

Literature Cited

  • Absolom, D. R., Lamberti, F. V., Policova, Z., Zingg, W., van Oss, C. J. & Neumann, A. W., 1983. Surface thermodynamics of bacterial adhesion.—Appl. environ. Microbiol.46, 90–97.

    PubMed  CAS  Google Scholar 

  • Abu, G. O., Weiner, R. M., Rice, J. & Colwell, R. R., 1991. Properties of an extracellular adhesive polymer from the marine bacteriumSchewanella colwelliana.—Biofouling3, 69–84.

    CAS  Google Scholar 

  • Baier, R. E., 1973. Influence of the initial surface condition of materials on bioadhesion. In: Proceedings 3rd International Congress on Marine Corrosion and Fouling Ed. by R. F. Acker, B. F. Brown, J. R. DePalma & W. P. Iverson. National Bureau of Standards, Gaithersburg. 633–639.

    Google Scholar 

  • Baier, R. E., Shafrin, E. G. & Zisman, W. A., 1968. Adhesion: Mechanisms that assist or impede it.; —Science, N. Y.162, 1360–1368.

    CAS  Google Scholar 

  • Becka, A. & Loeb, G., 1984. Ease of removal of barnacles from various polymeric materials.— Biotech. Bioeng.26, 1245–1251.

    Article  CAS  Google Scholar 

  • Becker, K., 1993. Attachment strength and colonization pattern of two macrofouling species on substrata with different surface tension (in-situ studies).—Mar. Biol.117, 301–309.

    Article  Google Scholar 

  • Becker, K., 1996. EPS-production and attachment strength of bacteria and diatoms on substrata with different surface tensions.—Microb. Ecol.32, 23–33.

    Article  PubMed  CAS  Google Scholar 

  • Becker, K. & Wahl, M., 1991. Influence of substratum surface tension on biofouling of artificial substrata in Kiel Bay (Western Baltic): In-situ studies.—Biofouling,4, 275–291.

    Google Scholar 

  • Brewer, R. H., 1984. The influence of the orientation, roughness, and wettability of solid surfaces on the behavior and attachment of planulae ofCyanea (Cnidaria: Scyphozoa).—Biol. Bull. mar. biol. Lab., Woods Hole166, 11–21.

    Article  Google Scholar 

  • Brown, I., Blunn, G. & Jones, E. B. G., 1984. Attachment of marine fouling Protozoa. In: Proceedings 6th International Congress of Marine Corrosion and Fouling. Athens, 113–127.

  • Burchard, R. P., Rittschof, D. & Bonaventura, J., 1990. Adhesion and motility of gliding bacteria on substrata with different surface free energies.—Appl. environ. Microbiol.56, 2529–2534.

    PubMed  CAS  Google Scholar 

  • Busscher, H. J., 1985. Surface free energies and the adhesion of oral bacteria. Ph.D. Thesis, Riksuniversitet te Groningen, 144 pp.

  • Busscher, H. J., Weekamp, A. H., van der Mei, H. C., van Pelt, A. W. J., de Jonge, H. P. & Arends, J., 1984. Measurements of the surface free energy of bacterial cell surfaces and relevance for adhesion.—Appl. environ. Microbiol.48, 980–983.

    PubMed  CAS  Google Scholar 

  • Chamberlain, A. H. L., 1976. Algal settlement and secretion of adhesive materials. In: Proceedings 3rd International Biodegradation Symposium. Ed. by J. M. Sharpley & A. M. Kaplan. Appl. Sci., London, 417–432.

    Google Scholar 

  • Characklis, W. G. & Cooksey, K. E., 1983. Biofilms and microbial fouling.—Adv. appl. Microbiol.29, 93–138.

    CAS  Google Scholar 

  • Christensen, B. E., Kjosbakken, J. & Smidsrod, O., 1985. Partial chemical and physical characterization of two extracellular polysaccharides produced by marine periphyticPseudomonas sp. strain NCMB 2021.—Appl. environ. Microbiol.50, 837–845.

    PubMed  CAS  Google Scholar 

  • Clarkson, N. & Evans, L. V., 1995. Raft trial experiments to investigate the antifouling potential of silicone elastomer polymers with added biocide.—Biofouling9, 129–143.

    CAS  Google Scholar 

  • Cleary, J. J. & Stebbing, A. R. D., 1987. Organotin in the surface microlayer and subsurface water of southwest England.—Mar. Pollut. Bull.48, 238–246.

    Article  Google Scholar 

  • Cooksey, K. E. & Cooksey, B., 1986. Adhesion of fouling diatoms to surfaces: some biochemistry. In: Algal biofouling. Ed. by L. V. Evans & K. D. Hoagland. Elsevier, Amsterdam, 41–53.

    Chapter  Google Scholar 

  • Cooksey, K. E. & Wigglesworth-Cooksey, B., 1995. Adhesion of bacteria and diatoms to surfaces in the sea: a review.—Aquat. microb. Ecol.9, 87–96.

    Article  Google Scholar 

  • Crisp, D. J., Walker, G., Young, G. A. & Yule, A. B., 1985. Adhesion and substrate choice in mussels and barnacles.—J. Coll. Interf. Sci.104, 40–50.

    Article  Google Scholar 

  • Daniel, G. F., Chamberlain, A. H. L. & Jones, E. B. G., 1980. Ultrastructural observations on the marine fouling algaeAmphora.—Helgoländer Meeresunters.34, 123–149.

    Article  CAS  Google Scholar 

  • Denny, M. W., 1988. Biology and the mechanisms of the wave swept environment. Princeton Univ. Press, New Jersey, 329 pp.

    Google Scholar 

  • Dexter, S. C., 1979. Influence of substratum critical surface tension on bacterial adhesion.—In-situ studies.—J. Coll. Interf. Sci.70, 346–354.

    Article  CAS  Google Scholar 

  • Duddridge, J. E., Kent, C. A. & Laws, J. F., 1982. Effect of surface shear stress on the attachment ofPseudomonas fluorescens to stainless steel under defined flow condition.—Biotech. Bioeng.24, 153–164.

    Article  CAS  Google Scholar 

  • Eiben, R., 1976. Der Einfluß der Benetzungsspannung und Ionen auf die Substratbesiedlung und das Einsetzen der Metamorphose bei Bryozoenlarven (Bowerbankia gracilis).—Mar. Biol.37, 249–254.

    Article  CAS  Google Scholar 

  • Fattom, A. & Shilo, M., 1984. Hydrophobicity as an adhesion mechanism of benthic cyanobacteria.— Appl. environ. Microbiol.47, 135–143.

    PubMed  CAS  Google Scholar 

  • Fischer, E. C., Castelli, V. J., Rogers, S. D. & Beile, H. R., 1984. Technology for control of marine fouling—a review. In: Marine corrosion and biodeterioration—An interdisciplinary study. Ed. by J. D. Costlow & R. C. Tipper. Spon, London, 261–294.

    Google Scholar 

  • Fletcher, M. & Floodgate, G. D., 1973. An electron-microscopic demonstration of acidic polysaccharide involved in the adhesion of a marine bacterium to solid surfaces.—J. gen. Microbiol.74, 325–334.

    CAS  Google Scholar 

  • Fletcher, M. & Loeb, G. I., 1979. Influence of substratum characteristics on the attachment of a marinePseudomonad to solid surfaces.—Appl. environ. Microbiol.37, 67–72.

    PubMed  Google Scholar 

  • Fletcher, B. & Marshall, K. C., 1982. Bubble contact angle method for evaluating substratum interfacial characteristics and its relevance to bacterial attachment.—Appl. environ. Microbiol.44, 184–192.

    PubMed  CAS  Google Scholar 

  • Fletcher, R. L. & Baier, R. E., 1984. Influence of surface energy on the development of the green algaEnteromorpha.—Mar. Biol. Lett.5, 251–254.

    Google Scholar 

  • Fletcher, M. & Pringle, J. H., 1985. The effect of surface free energy and medium surface tension on bacterial attachment to solid surfaces.—J. Coll. Interf. Sci.104, 5–13.

    Article  Google Scholar 

  • Goupil, D. W., DePalma, V. A. & Baier, R. E., 1980. Physical/Chemical characteristics of the macromolecular conditioning film in biological fouling. In: Proceedings 5th Congress on Marine Corrosion and Fouling. Ed. by E. C. Harderlie & R. C. Tipper. Madrid, 401–410.

  • Griffith, J. R., 1985. The fouling release concept: a viable alternative to toxic antifouling coatings? Trans. Inst. mar. Engrs97 (conf. 2, paper 38), 235–235.

    Google Scholar 

  • Gubbay, S., 1983. Compressive and adhesive strength of a variety of British barnacles.—J. mar. biol. Ass. U.K.63, 541–555.

    Google Scholar 

  • Hascall, G. K., 1973. The stalk of the suctorianTokophyra infusionum: Histochemistry, biochemistry, and physiology.—J. Protozool.20, 701–704.

    CAS  Google Scholar 

  • Hascall, G. K. & Rudzinska, M. A., 1970. Metamorphosis inTokophyra infusionum; and electronmicroscope study.—J. Protozool.17, 311–323.

    Google Scholar 

  • Hoagland, K. D., Rosowski, J. D., Gretz, M. R. & Roemer, S. C., 1993. Diatom extracellular polymeric substances: Function, fine structure, chemistry, and physiology.—J. Phycol.29, 537–566.

    Article  CAS  Google Scholar 

  • Hsieh, Y.-L. & Timm, D. A., 1988. Relationship of substratum wettability measurements and initialStaphylococcus aureus adhesion to films and fabrics.—J. Coll. Interf. Sci.123, 275–286.

    Article  CAS  Google Scholar 

  • Kirchman, D., Graham, S., Reish, D. & Mitchell, R., 1982. Bacteria induce settlement and metamorphosis ofJanua (Dexiospira) brasiliensis Grube (Polychaeta: Spirobidea).—J. exp. mar. Biol. Ecol.56, 153–163.

    Article  Google Scholar 

  • Lindner, E., 1992. A low surface energy approach in the control of marine biofouling.—Biofouling.6, 193–205.

    CAS  Google Scholar 

  • Loeb, G. I. & Neihof, R. A., 1975. Marine conditioning films.—Adv. Chem. Ser.145, 319–335.

    CAS  Google Scholar 

  • Loosdrecht van, M. C. M., Lyklema, J., Norde, W. & Zehnder, A. J. B., 1989. Bacterial adhesion: A physicochemical approach.—Microb. Ecol.17, 1–15.

    Article  Google Scholar 

  • Loosdrecht van, M. C. M., Lyklema, J., Norde, W., Schraa, G., & Zehnder, A., 1987. Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion.— Appl. environ. Microbiol.53, 1898–1901.

    PubMed  Google Scholar 

  • Maki, J. S., Rittschof, D., Schmidt, A. R., Snyder, A. G. & Mitchell, R., 1989. Factors controlling attachment of bryozoan larvae: A comparision of bacterial films and unfilmed surfaces.—Biol. Bull. mar. biol. Lab. Woods Hole177, 295–302.

    Article  Google Scholar 

  • Maki, J. D., Rittschof, D., Samuelsson, M.-O., Szewyk, U., Yule, A. B., Kjelleberg, S., Costlow, J. D., Mitchell, R., 1990. Effect of marine bacteria and their exopolymers on the attachment of barnacle cyprid larvae.—Bull. mar. Sci.46, 499–511.

    Google Scholar 

  • Maki, J. S., Rittschof, D. & Mitchell, R., 1992. Inhibition of barnacle attachment to bacterial films: An investigation of physical properties.—Microb. Ecol.23, 97–106.

    Article  Google Scholar 

  • Marshall, K. C., 1973. Mechanism of adhesion of marine bacteria to surfaces. In: Proceedings 3rd International Congress on Marine Corrosion and Fouling. Ed. by R. F. Acker, B. F. Brown, J. R. DePalma & W. P. Iverson. National Bureau of Standards, Gaithersburg, 625–634.

    Google Scholar 

  • Marshall, K. C., 1986. Adsorption and adhesion processes in microbial growth at interfaces.—Adv. Coll. Interf. Sci.25, 59–86.

    Article  CAS  Google Scholar 

  • Meyer, A. E., Baier, R. E. & King, R. W., 1988. Initial fouling of nontoxic coatings in fresh, brackish, and sea water.—Can. J. chem. Engng.66, 55–62.

    CAS  Google Scholar 

  • Mihm, J. W., Banta, W. C. & Loeb, G., 1981. Effects of adsorbed organic and primary fouling films on bryozoan settlement.—J. exp. mar. Biol. Ecol.54, 167–179.

    Article  Google Scholar 

  • Nair, N. B., Dharmaraj, K., Abdul Azis, P. K., Arunachalam, M. & Krishna Kumar, K., 1984. Ecology of biofouling onCrassostrea madrasensis (Preston) (Mollusca: Bivalvia) in a tropical backwater. —Proc. Indian Acad. Sci. (Animal Science)93, 419–430.

    Article  Google Scholar 

  • Neu, T. R. & Poralla, K., 1988. An amphiphilic polysaccharide from an adhesiveRhodococcus strain.—FEMS Microbiol. Lett.49, 389–392.

    Article  CAS  Google Scholar 

  • Neumann, A. W., Good, R. J., Hope, C. J. & Seipal, M., 1974. An equation-of-state approach to determine surface tensions of low-energy solids from contact angles.—J. Coll. Inter. Sci.49, 291–302.

    Article  CAS  Google Scholar 

  • Neumann, A. W., Absolom, D. R., Francis, D. W. & van Oss, C. J., 1980. Conversion tables of contact angles to surface tensions.—Sep. Purif. Methods9, 69–163.

    CAS  Google Scholar 

  • Parker, N. D. & Munn, C. B., 1984. Increased cell surface hydrophobicity associated with possession of an additional surface protein byAeromonas salmonicida.—FEMS Microbiol. Lett.21, 233–237.

    Article  CAS  Google Scholar 

  • Paul, J. H. & Jeffrey, W. H., 1985. Evidence for separate adhesion mechanisms for hydrophilic and hydrophobic surfaces inVibrio proteolytica.—Appl. environ. Microbiol.50, 431–437.

    PubMed  CAS  Google Scholar 

  • Pelt van, W. J., Weerkamp, A. H., Uyen, M. H. W. J. C., Bussher, H. J., de Jong, H. P. & Arends, J., 1985. Adhesion ofStreptococcus sanguis CH3 to polymers with different surface free energies. —Appl. environ. Microbiol.49, 1270–1275.

    PubMed  Google Scholar 

  • Pringle, J. H. & Fletcher, M., 1983. Influence of substratum wettability on attachment of freshwater bacteria to solid surfaces.—Appl. environ. Microbiol.45, 811–817.

    PubMed  Google Scholar 

  • Rabel, W., 1971. Einige Aspekte der Benetzungstheorie und ihre Anwendung auf die Untersuchung und Veränderung der Oberflächeneigenschaften von Polymeren.—Farbe und Lack,77, 997–1005.

    CAS  Google Scholar 

  • Rittle, K. H., Helmstetter, C. E., Meyer, A. E. & Baier, R. E., 1990.Escherichia coli retention on solid surfaces as functions of substratum surface free energy and cell growth phase.—Biofouling2, 121–130.

    Google Scholar 

  • Rittschof, D. & Costlow, J. D., 1989. Bryozoan and barnacle settlement in relation to initial surface wettability: A comparison of laboratory and field studies. In: Topics in marine biology. Ed. by E. D. Ros.—Scientia mar.53, 411–416.

  • Roberts, D., Rittschof, D., Holm, E. & Schmidt, A. R., 1991. Factors influencing initial larval-settlement: temporal, spatial and surface molecular components.—J. exp. mar. Biol. Ecol.150, 203–211.

    Article  Google Scholar 

  • Rutter, P. R., 1980. The physical chemistry of the adhesion of bacteria and other cells. In: Cell adhesion and mobility. Ed. by A. S. G. Curtis & J. D. Pitts. Cambridge Univ. Press, London, 103–135.

    Google Scholar 

  • Shea, C., Nunley, J. W., Williamson, J. C. & Smith-Sommerville, H. E., 1991. Comparison of the adhesion properties ofDeleya marina and the exopolysaccharide-defective mutant strain DMR. —Appl. environ. Microbiol.57, 3107–3113.

    PubMed  CAS  Google Scholar 

  • Sutherland, I. W., 1980. Polysaccharides in the adhesion of marine and freshwater bacteria. In: Microbial adhesion to surfaces. Ed. by R. C. W. Berkeley, J. M. Lynch, J. Melling, R. P. Rutter & B. Vincent. Horwood, Chichester, 330–338.

    Google Scholar 

  • Udhayakumar, M. & Karande, A. A., 1986. Adhesive strength of some biofouling organism.— Curr. Sci.55, 656–658.

    Google Scholar 

  • Vogelbein, W. K. & Thune, R. L., 1988. Ultrastructural features of three ectocommensal protozoa attached to the gills of the red swamp crawfish,Procambarus clarkii (Crustacea: Decapoda).—J. Protozool.35, 341–348.

    Google Scholar 

  • Webster, D. R., Cooksey, K. E. & Rubin, R. W., 1985. An investigation of the involvement of cytoskeletal structures and secretion in gliding motility of the marine diatom,Amphora coffaeformis. —Cell Motility5, 103–122.

    Article  CAS  Google Scholar 

  • Wigglesworth-Cooksey, B. & Cooksey, K. E., 1992. Can diatoms sense surfaces?: State of our knowledge.—Biofouling5, 227–238.

    CAS  Google Scholar 

  • Witman, J. D. & Suchanek, T. H., 1984. Mussels in flow: Drag and dislodgement by epizoans.— Mar. Ecol. Prog. Ser.16, 259–268.

    Article  Google Scholar 

  • Woodin, S. A., 1986. Settlement of infauna: Larval choice?—Bull. mar. Sci.39, 401–407.

    Google Scholar 

  • Woods, D. C. & Fletcher, R. I., 1991. Studies on the strength of adhesion of some common marine fouling diatoms.—Biofouling3, 287–303.

    Article  Google Scholar 

  • Wu, S., 1973. Polar and nonpolar interactions in adhesion.—J. Adhesion5, 39–55.

    Article  CAS  Google Scholar 

  • Yule, A. B. & Crisp, D. J., 1983. Adhesion of cyprids of the larvae of the barnacle,Balanus balanoides, to clean and Athropodin treated surfaces.—J. mar. biol. Ass. U.K.63, 261–271.

    Article  Google Scholar 

  • Yule, A. B. & Walker, G., 1984. The temporary adhesion of barnacle cyprids: Effects of some differing surface characteristics.—J. mar. biol. Ass. U.K.64, 429–439.

    Google Scholar 

  • Yule, A. B. & Walker, G., 1985. Settlement ofBalanus balanoides: The effect of cyprid antennular secretion.—J. mar. biol. Ass. U.K.65, 707–712.

    Article  Google Scholar 

  • Zisman, W. A., 1964. Relationships of equilibrium contact angle to liquid and solid constitution.— Adv. Chem.43, American Chemical Society, Washington DC, 1–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, K., Siriratanachai, S. & Hormchong, T. Influence of initial substratum surface tension on marine micro- and macro-fouling in the Gulf of Thailand. Helgoländer Meeresunters. 51, 445–461 (1998). https://doi.org/10.1007/BF02908726

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02908726

Keywords