Teagle H, Hawkins SJ, Moore PJ, Smale DA. The role of kelp species as biogenic habitat formers in coastal marine ecosystems. J Exp Mar Bio Ecol. 2017;492:81–98.
Article
Google Scholar
Wernberg T, Krumhansl K, Filbee-Dexter K, Pedersen MF. Status and trends for the world’s kelp forests. In: Sheppard C, editor. World Seas: an environmental evaluation, ecological issues and environmental impacts, vol. 3. 2nd ed. Amsterdam: Elsevier; 2019. p. 57–78. https://doi.org/10.1016/b978-0-12-805052-1.00003-6.
Chapter
Google Scholar
Graham MH. Effects of local deforestation on the diversity and structure of southern California giant kelp forest food webs. Ecosystems. 2004;7:341–57.
Article
Google Scholar
Ling SD. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia. 2008;156:883–94. https://doi.org/10.1007/s00442-008-1043-9.
Article
CAS
PubMed
Google Scholar
Filbee-Dexter K, Scheibling RE. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar Ecol Prog Ser. 2014;495:1–25.
Article
Google Scholar
Poloczanska ES. Global imprint of climate change on marine life. Nat Clim Change. 2013;3:919–25. https://doi.org/10.1038/NCLIMATE1958.
Article
Google Scholar
IPCC. Climate change 2014: impact, adaptation and vulnerability. In: Working group II contribution to the IPCC 5th Assessment Report. Cambridge; 2014.
Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. Toward a metabolic theory of ecology. Ecology. 2004;85:1771–89. https://doi.org/10.1890/03-9000.
Article
Google Scholar
Petraitis PS. Effects of body size and water temperature on grazing rates of four intertidal gastropods. Aust J Ecol. 1992;17:409–14.
Article
Google Scholar
Sanford E. Water temperature, predation, and the neglected role of physiological rate effects in rocky intertidal communities. Integr Comp Biol. 2002;42:881–91.
Article
Google Scholar
Brown MB, Edwards MS, Kim KY. Effects of climate change on the physiology of giant kelp, Macrocystis pyrifera, and grazing by purple urchin, Strongylocentrotus purpuratus. Algae. 2014;29:203–15. https://doi.org/10.4490/algae.2014.29.3.203.
Article
CAS
Google Scholar
Ling SD, Johnson CR, Ridgway K, Hobday AJ, Haddon M. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Glob Change Biol. 2009;15:719–31. https://doi.org/10.1111/j.1365-2486.2008.01734.x.
Article
Google Scholar
Christie H, Gundersen H, Rinde E, Filbee-Dexter K, Norderhaug KM, Pedersen T, et al. Can multitrophic interactions and ocean warming influence large-scale kelp recovery? Ecol Evol. 2019;9:2847–62. https://doi.org/10.1002/ece3.4963.
Article
PubMed
PubMed Central
Google Scholar
Goff JR. A chronology of natural and anthropogenic influences on coastal sedimentation, New Zealand. Mar Geol. 1997;138:105–17. https://doi.org/10.1016/S0025-3227(97)00018-2.
Article
CAS
Google Scholar
Scavia D, Field JC, Boesch DF, Buddemeier RW, Burkett V, Cayan DR, et al. Climate change impacts on U. S. coastal and marine ecosystems. Estuaries. 2002;25:149–64.
Article
Google Scholar
Airoldi L, Beck MW. Loss, status and trends for coastal marine habitats of Europe. Oceanogr Mar Biol An Annu Rev. 2007;35:345–405.
Google Scholar
Neal EG, Hood E, Smikrud K. Contribution of glacier runoff to freshwater discharge into the Gulf of Alaska. Geophys Res Lett. 2010;37:1–5.
Article
Google Scholar
Wiencke C, Clayton MN, Gómez I, Iken K, Lüder UH, Amsler CD, et al. Life strategy, ecophysiology and ecology of seaweeds in polar waters. Rev Environ Sci Bio/Technol. 2007;6:95–126. https://doi.org/10.1007/s11157-006-9106-z.
Article
Google Scholar
Bonsell C, Dunton KH. Long-term patterns of benthic irradiance and kelp production in the central Beaufort sea reveal implications of warming for Arctic inner shelves. Prog Oceanogr. 2018;162:160–70. https://doi.org/10.1016/J.POCEAN.2018.02.016.
Article
Google Scholar
Fritz M, Vonk JE, Lantuit H. Collapsing arctic coastlines. Nat Clim Change. 2017;7:6–7. https://doi.org/10.1038/nclimate3188.
Article
Google Scholar
Traiger SB, Konar B. Mature and developing kelp bed community composition in a glacial estuary. J Exp Mar Bio Ecol. 2018;501:26–35.
Article
Google Scholar
Airoldi L. The effects of sedimentation on rocky coast assemblages. Oceanogr Mar Biol. 2003;41:161–236.
Google Scholar
Filbee-Dexter K, Wernberg T, Fredriksen S, Norderhaug KM, Pedersen MF. Arctic kelp forests: diversity, resilience and future. Glob Planet Change. 2019;172:1–14. https://doi.org/10.1016/J.GLOPLACHA.2018.09.005.
Article
Google Scholar
Nearing MA, Pruski FF, O’Neal MR. Expected climate change impacts on soil erosion rates: a review. J Soil Water Conserv. 2004;59:43–50.
Google Scholar
Ling SD, Scheibling RE, Rassweiler A, Johnson CR, Shears N, Connell SD, et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Philos Trans R Soc B Biol Sci. 2015;370:20130269. https://doi.org/10.1098/rstb.2013.0269.
Article
Google Scholar
Carr LA, Bruno JF. Warming increases the top-down effects and metabolism of a subtidal herbivore. PeerJ. 2013;1:1–15. https://doi.org/10.7717/peerj.109.
Article
Google Scholar
Carr LA, Gittman RK, Bruno JF. Temperature influences herbivory and algal biomass in the Galapagos Islands. Front Mar Sci. 2018;5:1–10.
Article
CAS
Google Scholar
Provost EJ, Kelaher BP, Dworjanyn SA, Russell BD, Connell SD, Ghedini G, et al. Climate-driven disparities among ecological interactions threaten kelp forest persistence. Glob Change Biol. 2017;23:353–61. https://doi.org/10.1111/gcb.13414.
Article
Google Scholar
Hart MW, Scheibling RE. Heat waves, baby booms, and the destruction of kelp beds by sea urchins. Mar Biol. 1988;99:167–76. https://doi.org/10.1007/BF00391978.
Article
Google Scholar
Team NA. Climate change impacts on the united states. New York: Cambridge University Press; 2000.
Google Scholar
Lind A, Konar B. Effects of abiotic stressors on kelp early life-history stages. Algae. 2017;32:223–33.
Article
CAS
Google Scholar
Royer TC, Grosch CE. Ocean warming and freshening in the northern Gulf of Alaska. Geophys Res Lett. 2006;33:1–6.
Article
Google Scholar
Delorme NJ, Sewell MA. Effects of warm acclimation on physiology and gonad development in the sea urchin Evechinus chloroticus. Comp Biochem Physiol Part A Mol Integr Physiol. 2016;198:33–40.
Article
CAS
Google Scholar
Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
Article
Google Scholar
RStudio Team. RStudio: integrated development for R. Boston: RStudio Team; 2016.
Google Scholar
Bernstein BB, Schroeter SC, Mann KH. Sea urchin (Strongylocentrotus droebachiensis) aggregating behavior investigated by a subtidal multifactorial experiment. Can J Fish Aquat Sci. 1983;40:1975–86.
Article
Google Scholar
Lauzon-Guay J, Scheibling R. Behaviour of sea urchin Strongylocentrotus droebachiensis grazing fronts: food-mediated aggregation and density-dependent facilitation. Mar Ecol Prog Ser. 2007;329:191–204. https://doi.org/10.3354/meps329191.
Article
Google Scholar
Spurkland T, Iken K. Seasonal growth patterns of Saccharina latissima (Phaeophyceae, Ochrophyta) in a glacially-influenced subarctic estuary. Phycol Res. 2012;60:261–75.
Article
Google Scholar
Roleda MY, Dethleff D, Wiencke C. Transient sediment load on blades of Arctic Saccharina latissima can mitigate UV radiation effect on photosynthesis. Polar Biol. 2008;31:765–9.
Article
Google Scholar
Pulfrich A, Parkins CA, Branch GM, Bustamante RH, Velasquez CR. The effects of sediment deposits from Namibian diamond mines on intertidal and subtidal reefs and rock lobster populations. Aquat Conserv Mar Freshw Ecosyst. 2003;13:257–78.
Article
Google Scholar
Airoldi L, Hawkins SJ. Negative effects of sediment deposition on grazing activity and survival of the limpet Patella vulgata. Mar Ecol Prog Ser. 2007;332:235–40. https://doi.org/10.3354/meps332235.
Article
CAS
Google Scholar
Robles C. Disturbance and predation in an assemblage of herbivorous Diptera and algae on rocky shores. Oecologia. 1982;54:23–31.
Article
Google Scholar
Walker JW. Effects of fine sediments on settlement and survival of the sea urchin Evechinus chloroticus in northeastern New Zealand. Mar Ecol Prog Ser. 2007;331:109–18.
Article
Google Scholar
Bliss A, Hock R, Radić V. Global response of glacier runoff to twenty-first century climate change. J Geophys Res Earth Surf. 2014;119:717–30. https://doi.org/10.1002/2013JF002931.
Article
Google Scholar
Maloney ED, Camargo SJ, Chang E, Colle B, Fu R, Geil KL, et al. North American climate in CMIP5 experiments: Part III: Assessment of twenty-first-century projections. J Clim. 2014;27:2230–70.
Article
Google Scholar
Pirtle JL, Ibarra SN, Eckert GL. Nearshore subtidal community structure compared between inner coast and outer coast sites in Southeast Alaska. Polar Biol. 2012;35:1889–910.
Article
Google Scholar
Spurkland T, Iken K. Kelp bed dynamics in estuarine environments in subarctic Alaska. J Coast Res. 2011;275:133–43.
Article
Google Scholar
Bogen J. The impact of environmental changes on the sediment loads of Norwegian rivers. CATENA. 2009;79:251–6. https://doi.org/10.1016/j.catena.2009.07.003.
Article
Google Scholar
Burnell O, Russell B, Irving A, Connell S. Eutrophication offsets increased sea urchin grazing on seagrass caused by ocean warming and acidification. Mar Ecol Prog Ser. 2013;485:37–46. https://doi.org/10.3354/meps10323.
Article
CAS
Google Scholar
Carey N, Harianto J, Byrne M. Sea urchins in a high-CO2 world: partitioned effects of body size, ocean warming and acidification on metabolic rate. J Exp Biol. 2016;219:1178–86.
Article
Google Scholar
Franco J, Wernberg T, Bertocci I, Duarte P, Jacinto D, Vasco-Rodrigues N, et al. Herbivory drives kelp recruits into ‘hiding’ in a warm ocean climate. Mar Ecol Prog Ser. 2015;536:1–9. https://doi.org/10.3354/meps11445.
Article
Google Scholar
Siikavuopio SI, James P, Lysne H, Saether BS, Samuelsen TA, Mortensen A. Effects of size and temperature on growth and feed conversion of juvenile green sea urchin (Strongylocentrotus droebachiensis). Aquaculture. 2012;354–355:27–30.
Article
Google Scholar
Wheeler M. Temperature dependent feeding habits of the green sea urchin S. droebachiensis, on L. longicruris. JUST. 2017;5:1–5.
Article
Google Scholar
McKay K, Heck K. Presence of the Jonah crab Cancer borealis significantly reduces kelp consumption by the green sea urchin Strongylocentrotus droebachiensis. Mar Ecol Prog Ser. 2008;356:295–8. https://doi.org/10.3354/meps07238.
Article
Google Scholar
Sanford E, Kelly MW. Local adaptation in marine invertebrates. Ann Rev Mar Sci. 2011;3:509–35. https://doi.org/10.1146/annurev-marine-120709-142756.
Article
PubMed
Google Scholar
Scheibling RE, Hatcher BG. Ecology of Strongylocentrotus droebachiensis. In: Lawrence JM, editor. Edible sea urchins: biology and ecology. Amsterdam: Elsevier; 2007. p. 353–92.
Chapter
Google Scholar
Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA, et al. Effects of climate change on global seaweed communities. J Phycol. 2012;48:1064–78.
Article
CAS
Google Scholar
Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chang F, English CA, et al. Climate change impacts on marine ecosystem. Ann Rev Mar Sci. 2012;4:4.1–4.27.
Article
Google Scholar
D’Antonio CM. Role of sand in the domination of hard substrata by the intertidal alga. Mar Ecol Prog Ser. 1986;27:263–75.
Article
Google Scholar
Branch GM, Eekhout S, Bosman AL. Short-term effects of the 1988 Orange River floods on the intertidal rocky-shore communities of the open coast. Trans R Soc South Afr. 1990;47:331–54. https://doi.org/10.1080/00359199009520246.
Article
Google Scholar
Trowbridge CD. Mesoherbivory: the ascoglossan sea slug Placida dentritica may contribute to the restricted distribution of its algal host. Mar Ecol Prog Ser. 1992;83:207–20.
Article
Google Scholar