Morrison RIG, Harrington BA. Critical shorebird resources in James Bay and eastern North America. In: Transactions of the 44th American wildlife and natural resources conference. Washington, DC: Wildlife Management Institute; 1979. p. 498–507.
Morrison RIG, Ross RK. Atlas of Nearctic shorebirds on the coast of South America. Ottawa: Canadian Wildlife Service; 1989.
Google Scholar
Wilson WH. The foraging ecology of migratory shorebirds in marine soft-sediment communities: the effects of episodic predation on prey populations. Am Zool. 1991;31:840–8.
Article
Google Scholar
Goss-Custard JD, Kay DG, Blindell RM. The density of migratory and overwintering redshank, Tringa totanus (L.) and curlew, Numenius arquata (L.), in relation to the density of their prey in south-east England. Estuar Coast Shelf Sci. 1977;5:497–510.
Article
Google Scholar
Evans PR. Adaptations shown by foraging shorebirds to cyclical variations in the activity or availability of their invertebrate prey. In: Naylor E, Hartnoll RG, editors. Cyclic phenomena in marine plants and animals. Oxford: Pergamon Press; 1979. p. 357–66.
Chapter
Google Scholar
Bryant DM. Effects of prey density and site character on estuary usage by overwintering waders (Charadrii). Estuar Coast Shelf Sci. 1979;9:369–84.
Article
Google Scholar
Quammen ML. Predation by shorebirds, fish, and crabs on Invertebrates in intertidal mudflats: an experimental test. Ecology. 1984;65:529–37.
Article
Google Scholar
Morrison RJG, Myers JP. Wader migration systems in the new world. Wader Study Group Bulletin. 1987;49(Supplement):57–69.
Google Scholar
Zwarts L, Wanink JH. How the food supply harvestable by waders in the Wadden Sea depends on the variation in energy density, body weight, biomass, burying depth and behaviour of tidal-flat invertebrates. Neth J Sea Res. 1993;31:441–76.
Article
Google Scholar
Baird D, Evans PR, Milne H, Pienkowski MW. Utilization by shorebirds of benthic invertebrate production in intertidal areas. Oceanogr Mar Biol. 1985;23:573–97.
Google Scholar
Olafsson EB, Peterson CH, Ambrose W. Does recruitment limitation structure populations and communities of macro-invertebrates in marine soft sediments: the relative significance of pre- and post-settlement processes. Oceanogr Mar Biol. 1994;32:65–109.
Google Scholar
Kneib RT. Testing for indirect effects of predation in an intertidal soft-bottom community. Ecology. 1988;69:1795–805.
Article
Google Scholar
Botto F, Iribarne OO, Martínez MM, Delhey K, Carrete M. The effect of migratory shorebirds on the benthic species of three southwestern Atlantic Argentinean estuaries. Estuaries. 1998;21:700–9.
Article
Google Scholar
Mercier F, McNeil R. Seasonal variations in intertidal density of invertebrate prey in a tropical lagoon and effects of shorebird predation. Can J Zool. 1994;72:1755–63.
Article
Google Scholar
Velasquez C. Depredación por parte de las aves sobre la macroinfauna intermareal de fondos blandos en el estuario del río Quelque (IX Región, Chile) [Tesis Magister Ciencias Zoologicas]. Valdivia: Universidad Austral de Chile; 1987.
Google Scholar
Zwarts L, Esselink P. Versatility of male curlews Numenius arquata preying upon Nereis diversicolor: deploying contrasting capture modes dependent on prey availability. Mar Ecol Prog Ser. 1989;56:255–69.
Article
Google Scholar
Thrush SF. Complex role of predators in structuring soft-sediment macrobenthic communities: implications of changes in spatial scale for experimental studies. Aust J Ecol. 1999;24:344–54.
Article
Google Scholar
Bergström U, Englund G. Estimating predation rates in experimental systems: scale-dependent effects of aggregative behaviour. Oikos. 2002;97:251–9.
Article
Google Scholar
Carignan R, Planas D. Recognition of nutrient and light limitation in turbid mixed layers: three approaches compared in the Parani floodplain (Argentina). Limnol Oceanogr. 1994;39:580–96.
Article
CAS
Google Scholar
Sarnelle O. Daphnia effects on microzooplankton: comparisons of enclosure and whole- lake responses. Ecology. 1997;78:913–28.
Google Scholar
Schindler DW. Replication versus realism: the need for ecosystem-scale experiments. Ecosystems. 1998;1:323–34.
Article
Google Scholar
Carpenter SR. Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology. 1996;77:677–80.
Article
Google Scholar
Englund G, Olsson T. Treatment effects in a stream fish enclosure experiment: influence of predation rate and prey movements. Oikos. 1996;77:519–28.
Article
Google Scholar
Englund G. Importance of spatial scale and prey movements in predator caging experiments. Ecology. 1997;78:2316–25.
Article
Google Scholar
Crane J. Fiddler crabs of the world: Ocypodidae: Genus Uca. Princeton: Princeton University Press; 1975.
Google Scholar
Bogazzi E, Iribarne OO, Guerrero R, Spivak E. Wind pattern may explain the southern limit of distribution of a southwestern Atlantic fiddler crab. J Shellfish Res. 2001;20:353–60.
Google Scholar
Spivak ED, Gavio MA, Navarro CE. Life history and structure of the world’s southernmost Uca population: Uca uruguayensis (Crustacea, Brachyura) in Mar Chiquita lagoon (argentina). Bull Mar Sci. 1991;48:679–88.
Google Scholar
Myers JP, Myers LP. Shorebirds of coastal Buenos Aires Province, Argentina. Ibis. 1979;121:186–200.
Article
Google Scholar
Blanco DE. Uso de hábitat por tres especies de aves playeras (Pluvialis dominica, Limosa haemastica y Calidris fuscicollis) en relación con la marea en Punta Rasa, Argentina. Rev Chil Hist Nat. 1998;71:87–94.
Google Scholar
Martínez-Curci NS, Isacch JP, Azpiroz AB. Shorebird seasonal abundance and habitat-use patterns in Punta Rasa, Samborombón Bay, Argentina. Waterbirds. 2015;38:68–76.
Article
Google Scholar
Iribarne OO, Martínez MM. Predation on the southwestern Atlantic fiddler crab (Uca uruguayensis) by migratory shorebirds (Pluvialis dominica, P. squatarola, Arenaria interpres, and Numenius phaeopus). Estuaries. 1999;22:47–54.
Article
Google Scholar
Zwarts L. The winter exploitation of fiddler crabs Uca tangeri by waders in Guinea Bbissau. Ardea. 1985;73:3–12.
Google Scholar
Stienen EWM, Brenninkmeijer A, Klaassen M. Why do Gull-billed Terns Gelochelidon nilotica feed on fiddler crabs Uca tangeri in Guinea-Bissau? Ardea. 2008;96:243–50.
Article
Google Scholar
Ribeiro PD, Iribarne OO, Jaureguy L, Navarro D, Bogazzi E. Variable sex-specific mortality due to shorebird predation on a fiddler crab. Can J Zool. 2003;81:1209–21.
Article
Google Scholar
Ribeiro PD, Navarro DD, Jaureguy LM, Iribarne OO. Mudflat use and predation on male southwestern atlantic fiddler crabs (Uca uruguayensis) by Gull-billed Terns (Gelochelidon nilotica). Waterbirds. 2018;41:68–72.
Article
Google Scholar
Ribeiro PD, Iribarne OO, Daleo P. The relative importance of substratum characteristics and recruitment in determining the spatial distribution of the fiddler crab Uca uruguayensis Nobili. J Exp Mar Biol Ecol. 2005;314:99–111.
Article
Google Scholar
Manly BFJ. Randomization, bootstrap and Monte Carlo methods in biology. Third. Boca Raton, FL: Chapman and Hall/CRC; 2006.
Ribeiro PD, Iribarne OO, Navarro D, Jaureguy L. Environmental heterogeneity, spatial segregation of prey, and the utilization of southwest Atlantic mudflats by migratory shorebirds. Ibis. 2004;146:672–82.
Article
Google Scholar
Ribeiro PD, Iribarne OO. Coupling between microphytobenthic biomass and fiddler crab feeding. J Exp Mar Biol Ecol. 2011;407:147–54.
Article
Google Scholar
de la Iglesia HO, Rodríguez EM, Dezi RE. Burrow plugging in the crab Uca uruguayensis and its synchronization with photoperiod and tides. Physiol Behav. 1994;55:913–9.
Article
PubMed
Google Scholar
Yamaguchi T. Incubation of eggs and embryonic development of the fiddler crab, Uca lactea (Decapoda, Brachyura, Ocypodidae). Crustaceana. 2001;74:449–58.
Article
Google Scholar
Ribeiro PD, Christy JH, Nuñez JD, Iribarne OO. Hood-building dynamics and mating mode in the temperate fiddler crab Uca uruguayensis. J Crustac Biol. 2016;36:507–14.
Article
Google Scholar
Murdoch WW, Oaten A. Predation and population stability. In: MacFadyen A, editor. Advances in ecological research. Cambridge: Academic Press; 1975. p. 1–131.
Google Scholar
Sih A, Crowley P, McPeek M, Petranka J, Strohmeier K. Predation, competition, and prey communities: a review of field experiments. Annu Rev Ecol Syst. 1985;16:269–311.
Article
Google Scholar
Kerfoot WC, Sih A. Predation: direct and indirect impacts on aquatic communities. Hanover: University Press of New England; 1987.
Google Scholar
Krebs CJ, Boutin S, Boonstra R, Sinclair ARE, Smith JNM, Dale MRT, et al. Impact of food and predation on the snowshoe hare cycle. Science. 1995;269:1112–5.
Article
CAS
PubMed
Google Scholar
Spaans AL. Wader studies in Surinam. South America. Wader Study Group Bull. 1979;25:32–7.
Google Scholar
Hostetter NJ, Evans AF, Cramer BM, Collis K, Lyons DE, Roby DD. Quantifying avian predation on fish populations: integrating predator-specific deposition probabilities in tag recovery studies. T Am Fish Soc. 2015;144:410–22.
Article
Google Scholar
Teuscher DM, Green MT, Schill DJ, Brimmer AF, Hillyard RW. Predation by American white pelicans on Yellowstone Cutthroat Trout in the Blackfoot River drainage, Idaho. N Am J Fish Manag. 2015;35:454–63.
Article
Google Scholar
Zwarts L, Blomert A-M. Selectivity of Whimbrels feeding on fiddler crabs explained by component specific digestibilities. Ardea. 1990;78:193–208.
Google Scholar
Zwarts L, Dirksen S. Digestive bottleneck limits the increase in food intake of Whimbrels preparing for spring migration from the Banc d’Arguin, Mauritania. Ardea. 1990;78:257–78.
Google Scholar
Bildstein KL, McDowell SG, Brisbin IL. Consequences of sexual dimorphism in sand fiddler crabs, Uca pugilator: differential vulnerability to avian predation. Anim Behav. 1989;37:133–9.
Article
Google Scholar
Koga T, Backwell PRY, Christy JH, Murai M, Kasuya E. Male-biased predation of a fiddler crab. Anim Behav. 2001;62:201–7.
Article
Google Scholar
Boshe JI. Predation of fiddler crabs Uca stenodactyla (Ocypodidae) by the common shore birds in Pangani Beach, Tanzania. Afr J Ecol. 1982;20:237–40.
Article
Google Scholar
Ens BJ, Klaassen M, Zwarts L. Flocking and feeding in the fiddler crab (Uca tangeri): prey availability as risk-taking behaviour. Neth J Sea Res. 1993;31:477–94.
Article
Google Scholar
Klaassen M, Ens BJ. Habitat selection and energetics of the fiddler crab (Uca tangeri). Neth J Sea Res. 1993;31:495–502.
Article
Google Scholar
Wolff WJ, Smit CJ. The Banc d’Arguin, Mauritania, as an environment for coastal birds. Ardea. 1990;78:17–38.
Google Scholar
Zwarts L, Blomert A-M, Ens BJ, Hupkes R, Van Spanje TM. Why do waders reach high feeding densities on the intertidal flats of the Banc d’Arguin, Mauritania? Ardea. 1990;78:39–52.
Google Scholar
Sih A. Predators and prey lifestyles: an evolutionary and ecological overview. In: Kerfoot WC, Sih A, editors. Predation: direct and indirect impacts on aquatic communities. Hanover: University Press of New England; 1987. p. 203–24.
Google Scholar
Anderson TW. Predator responses, prey refuges, and density-dependent mortality of a marine fish. Ecology. 2001;82:245–57.
Article
Google Scholar
Jana D, Ray S. Impact of physical and behavioral prey refuge on the stability and bifurcation of Gause type Filippov prey-predator system. Model Earth Syst Environ. 2016;2:24.
Article
Google Scholar
Veselý L, Boukal DS, Buřič M, Kozák P, Kouba A, Sentis A. Effects of prey density, temperature and predator diversity on nonconsumptive predator-driven mortality in a freshwater food web. Sci Rep. 2017;7:18075.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maynard Smith J. Models in Ecology. 1st ed. Cambridge: Cambridge University Press; 1974.
Google Scholar
Kokko H. Modelling for field biologists and other interesting people. Cambridge: Cambridge University Press; 2007.
Book
Google Scholar
Goss-Custard JD. Competition for food and interference among waders. Ardea. 1980;68:31–52.
Google Scholar
Shealer DA, Burger J. Effects of interference competition on the foraging activity of tropical Roseate Terns. Condor. 1993;95:322.
Article
Google Scholar
Vahl WK, Van Der Meer J, Meijer K, Piersma T, Weissing FJ. Interference competition, the spatial distribution of food and free-living foragers. Anim Behav. 2007;74:1493–503.
Article
Google Scholar
Colby DR, Fonseca MS. Population dynamics, spatial dispersion and somatic growth of the sand fiddler crab Uca pugilator. Mar Ecol Prog Ser. 1984;16:269–79.
Article
Google Scholar
Koch V, Wolff M, Diele K. Comparative population dynamics of four fiddler crabs (Ocypodidae, genus Uca) from a North Brazilian mangrove ecosystem. Mar Ecol Prog Ser. 2005;291:177–88.
Article
Google Scholar
Wilson KA. Ecology of mangrove crabs: predation, physical factors and refuges. Bull Mar Sci. 1989;44:263–73.
Google Scholar
Nobbs M, Blamires SJ. Fiddler crab spatial distributions are influenced by physiological stressors independent of sympatric interactions. J Exp Mar Biol Ecol. 2017;491:19–26.
Article
Google Scholar
Nobbs M. Effects of vegetation differ among three species of fiddler crabs (Uca spp.). J Exp Mar Biol Ecol. 2003;284:41–50.
Article
Google Scholar
Checon HH, Costa TM. Fiddler crab (Crustacea: Ocypodidae) distribution and the relationship between habitat occupancy and mouth appendages. Mar Biol Res. 2017;13:618–29.
Article
Google Scholar
Welch JM, Reinsel KA, Battles KA, Romero AO, Blaine JM, Sendi RL, et al. Settlement of fiddler crab megalopae on a North Carolina (USA) sandflat: species identification using multiplex PCR provides evidence for selective settlement. Mar Ecol Prog Ser. 2015;523:115–23.
Article
CAS
Google Scholar
Raposa KB, McKinney RA, Wigand C, Hollister JW, Lovall C, Szura K, et al. Top-down and bottom-up controls on southern New England salt marsh crab populations. PeerJ. 2018;6:e4876.
Article
PubMed
PubMed Central
Google Scholar
Olivier SR, Escofet A, Penchaszadeh P, Orensanz JM. Estudios ecológicos de la región estuarial de Mar Chiquita (Buenos Aires, Argentina). I. Las comunidades bentónicas. Anales Soc Ci Argent. 1972;193:237–62.
Google Scholar
Kim TW, Christy JH, Choe JC. A preference for a sexual signal keeps females safe. PLoS ONE. 2007;2:e422.
Article
PubMed
PubMed Central
Google Scholar
Kim TW, Christy JH, Dennenmoser S, Choe JC. The strength of a female mate preference increases with predation risk. Proc R Soc B. 2009;276:775–80.
Article
PubMed
Google Scholar
Sih A. Predation risk and the evolutionary ecology of reproductive behaviour. J Fish Biol. 1994;45:111–30.
Article
Google Scholar
Lima SL, Dill LM. Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool. 1990;68:619–40.
Article
Google Scholar
Clark CW. Antipredator behavior and the asset-protection principle. Behav Ecol. 1994;5:159–70.
Article
Google Scholar
Martín J, López P. When to come out from a refuge: risk-sensitive and state-dependent decisions in an alpine lizard. Behav Ecol. 1999;10:487–92.
Article
Google Scholar
Koga T, Backwell PRY, Jennions MD, Christy JH. Elevated predation risk changes mating behaviour and courtship in a fiddler crab. Proc R Soc London. 1998;265B:1385–90.
Article
Google Scholar
Heatwole SJ, Christy JH, Backwell PRY. Taking a risk: how far will male fiddler crabs go? Behav Ecol Sociobiol. 2018;72:82.
Article
Google Scholar
Hemmi JM, Marshall J, Pix W, Vorobyev M, Zeil J. The variable colours of the fiddler crab Uca vomeris and their relation to background and predation. J Exp Biol. 2006;209:4140–53.
Article
PubMed
Google Scholar
Christy JH, Baum JK, Backwell PRY. Attractiveness of sand hoods built by courting male fiddler crabs, Uca musica: test of a sensory trap hypothesis. Anim Behav. 2003;66:89–94.
Article
Google Scholar
Perez DM, Christy JH, Backwell PRY. Choosing a mate in a high predation environment: female preference in the fiddler crab Uca terpsichores. Ecol Evol. 2016;6:7443–50.
Article
PubMed
PubMed Central
Google Scholar
Moody AL, Houston AI, McNamara JM. Ideal free distributions under predation risk. Behav Ecol Sociobiol. 1996;38:131–43.
Article
Google Scholar
Jennions MD, Backwell PRY, Murai M, Christy JH. Hiding behaviour in fiddler crabs: how long should prey hide in response to a potential predator? Anim Behav. 2003;66:251–7.
Article
Google Scholar
Benard MF. Predator-induced phenotypic plasticity in organisms with complex life histories. Annu Rev Ecol Evol Syst. 2004;35:651–73.
Article
Google Scholar
Urban MC. Risky prey behavior evolves in risky habitats. Proc Natl Acad Sci USA. 2007;104:14377–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morgan SG, Christy JH. Adaptive significance of the timing of larval release by crabs. Am Nat. 1995;145:457–79.
Article
Google Scholar
Blumstein DT, Cooley L, Winternitz J, Daniel JC. Do yellow-bellied marmots respond to predator vocalizations? Behav Ecol Sociobiol. 2008;62:457–68.
Article
Google Scholar
Taraborelli P, Gregorio P, Moreno P, Novaro A, Carmanchahi P. Cooperative vigilance: the guanaco’s (Lama guanicoe) key antipredator mechanism. Behav Processes. 2012;91:82–9.
Article
PubMed
Google Scholar
Hemmi JM. Predator avoidance in fiddler crabs: 1. Escape decisions in relation to the risk of predation. Anim Behav. 2005;69:603–14.
Article
Google Scholar
Hemmi JM. Predator avoidance in fiddler crabs: 2. The visual cues. Anim Behav. 2005;69:615–25.
Article
Google Scholar
Hemmi JM, Pfeil A. A multi-stage anti-predator response increases information on predation risk. J Exp Biol. 2010;213:1484–9.
Article
PubMed
Google Scholar
Daleo P, Ribeiro P, Iribarne O. The SW Atlantic burrowing crab Chasmagnathus granulatus Dana affects the distribution and survival of the fiddler crab Uca uruguayensis Nobili. J Exp Mar Biol Ecol. 2003;291:255–67.
Article
Google Scholar