Acheampong E, Campbell RW, Diekmann ABS, John MA (2011) Food availability effects on reproductive strategy: the case of Acartia tonsa (Copepoda: Calanoida). Mar Ecol Prog Ser 428:151–159
Article
Google Scholar
Allen RM, Marshall DJ (2010) The larval legacy: cascading effects of recruit phenotype on post-recruitment interactions. Oikos 119:1977–1983
Article
Google Scholar
Anger K (2001) The biology of decapod crustacean larvae. Crustacean issues, vol 14. Balkema, Lisse
Anger K (2006) Contributions of larval biology to crustacean research: a review. Invertebr Reprod Dev 49:175–205
Article
Google Scholar
Anger K, Thatje S, Lovrich G, Calcagno J (2003) Larval and early juvenile development of Paralomis granulosa reared at different temperatures: tolerance of cold and food limitation in a lithotid crab from high latitudes. Mar Ecol Prog Ser 253:243–251
Article
Google Scholar
Boddeke R (1982) The occurence of winter and summer eggs in the brown shrimp (Crangon crangon) and the pattern of recruitment. Neth J Sea Res 16:151–162
Article
Google Scholar
Boersma M (1997) Offspring size in Daphnia: does it pay to be overweight? Hydrobiologia 360:79–88
Article
Google Scholar
Brillon S, Lambert Y, Dodson J (2005) Egg survival, embryonic development, and larval characteristics of northern shrimp (Pandalus borealis) females subject to different temperature and feeding conditions. Mar Biol 147:895–911
Article
Google Scholar
Calado R, Dionisio G, Dinis MT (2007) Starvation resistance of early zoeal stages of marine ornamental shrimps Lysmata spp. (Decapoda: Hippolytidae) from different habitats. J Exp Mar Biol Ecol 351:226–233
Article
Google Scholar
Campos J, van der Veer H (2008) Autoecology of Crangon crangon (L.) with an emphasis on latitudinal trends. Ocean Mar Biol Annu Rev 46:65–105
Article
Google Scholar
Campos J, van der Veer H, Freitas V, Kooijman S (2009) Contribution of different generations of the brown shrimp Crangon crangon (L.) in the Dutch Wadden Sea to commercial fisheries: a dynamic energy budget approach. J Sea Res 62:106–113
Article
Google Scholar
Criales MM, Anger K (1986) Experimental studies on the larval development of the shrimps Crangon crangon and C. allmanni. Helgoländer Meeresunters 40:241–265
Article
Google Scholar
Daewel U, Schrum C, Temming A (2011) Towards a more complete understanding of the life cycle of brown shrimp (Crangon crangon): modelling passive larvae and juvenile transport in combination with physically forced vertical juvenile migration Fish. Oceanogr 20:479–496
Google Scholar
Fernandez M, Calderon R, Cifuentes M, Pappalardo P (2006) Brooding behaviour and cost of brooding in small body size brachyuran crabs. Mar Ecol Prog Ser 309:213–220
Article
Google Scholar
Fischer S, Thatje S, Graeve M, Paschke K, Kattner G (2009) Bioenergetics of early life-history stages of the brachyuran crab Cancer setosus in response to changes in temperature. J Exp Mar Biol Ecol 374:160–166
Article
Google Scholar
Fischer B, Taborsky B, Kokko H (2011) How to balance the offspring quality-quantity tradeoff when environmental cues are unreliable. Oikos 120:258–270
Article
Google Scholar
Gebauer P, Paschke K, Anger K (2010) Seasonal variation in the nutritional vulnerability of first-stage larval porcelain crab, Petrolisthes laevigatus (Anomura: Porcellanidae) in southern Chile. J Exp Mar Biol Ecol 386:103–112
Article
Google Scholar
Gelin A, Crivelli AJ, Rosecchi AJ, Kerambrun P (2000) Is the brown shrimp Crangon crangon (L.) population of the Vaccarès lagoon (Camargue, France, Rhône delta) an annual population? C R Acad Sci III 323:741–748
Article
PubMed
CAS
Google Scholar
Giménez L (2006) Phenotypic links in complex life cycles: conclusions from studies with decapod crustaceans. Integr Comp Biol 46:615–622
Article
PubMed
Google Scholar
Giménez L (2010) Relationships between habitat conditions, larval traits, and juvenile performance in a marine invertebrate. Ecology 91:1401–1413
Article
PubMed
Google Scholar
Giménez L, Anger K (2001) Relationships among salinity, egg size, embryonic development, and larval biomass in the estuarine crab Chasmagnathus granulata Dana, 1851. J Exp Mar Biol Ecol 260:241–257
Article
PubMed
Google Scholar
Grosberg RK, Levitan DR (1992) For adults only? Supply-side ecology and the history of larval biology. Trends Ecol Evol 7:130–133
Article
PubMed
CAS
Google Scholar
Harrison XA, Blount JD, Inger R, Norris DR, Bearhop S (2011) Carry-over effects as drivers of fitness differences in animals. J Anim Ecol 80:4–18
Article
PubMed
Google Scholar
Henderson PA, Seaby RM, Somes JR (2006) A 25-year study of climatic and density-dependent population regulation of common shrimp Crangon crangon (Crustacea: Caridea) in the Bristol Channel. J Mar Biol Assoc UK 86:287–298
Article
Google Scholar
Hufnagl M, Temming A (2011) Growth in the brown shrimp Crangon crangon. II. Meta-analysis and modeling. Mar Ecol Pro Ser 435:155–172
Article
Google Scholar
ICES (2010) Report of the working group on Crangon fisheries and life history (WGCRAN). ICES CM 2010/SSGEF, vol 17
Jaeckle WB (1995) Variation in the size, energy content, and biochemical composition of invertebrate eggs: correlates to the mode of larval development. In: McEdward L (ed) Ecology of marine invertebrate larvae. CRC Press, Boca Raton, pp 49–77
Google Scholar
Kunisch M, Anger K (1984) Variation in development and growth rates of larval and juvenile spider crabs Hyas araneus reared in the laboratory. Mar Ecol Prog Ser 15:293–301
Article
Google Scholar
Linck BM (1995) Einfluß von Temperatur und Salzgehalt auf die Larven der Nordseegarnele Crangon crangon. Master thesis, University of Oldenburg, Germany
Marchand J (1981) Observations on the ecology of Crangon crangon (Linne) and Palaemon longirostris H. Milne Edwards (Crustacea, Decapoda, Natantia): inner part of the Loire estuary (France). Vie Milieu 31:83–92
Google Scholar
Marshall DJ, Keough MJ (2006) Complex life cycles and offspring provisioning in marine invertebrates. Integr Comp Biol 46:643–651
Article
PubMed
Google Scholar
McCormick M, Hoey A (2004) Larval growth history determines juvenile growth and survival in a tropical marine fish. Oikos 106:225–242
Article
Google Scholar
Meidel SK, Scheibling RE, Metaxas A (1999) Relative importance of parental and larval nutrition on larval development and metamorphosis of the sea urchin Strongylocentrotus droebachiensis. J Exp Mar Biol Ecol 240:161–178
Article
Google Scholar
Moland E, Moland OE, Stenseth NC (2010) Maternal influences on offspring size variation and viability in wild European lobster Homarus gammarus. Mar Ecol Prog Ser 400:165–173
Article
Google Scholar
Morgan SG (1995) Life and death in the plankton: larval mortality and adaptation. In: McEdward L (ed) Ecology of Marine Invertebrate Larvae. CRC Press, Boca Raton, pp 279–321
Google Scholar
Ouellet P, Plante F (2004) An investigation of the sources of variability in American lobster (Homarus americanus) eggs and larvae: female size and reproductive status, and interannual and interpopulation comparisons. J Crustac Biol 24:481–495
Article
Google Scholar
Palacios E, Ibarra AM, Ramirez JL, Portillo G, Racotta IS (1998) Biochemical composition of eggs and nauplii in White Pacific Shrimp, Penaeus vannamei (Boone), in relation to the physiological condition of spawners in a commercial hatchery. Aquacult Res 29:183–189
Article
Google Scholar
Pan M, Pierce G, Cunningham C, Hay S (2011) Spatiotemporal coupling/decoupling of planktonic larvae and benthic settlement in decapods in the Scottish east coast. Mar Biol 158:31–46
Article
Google Scholar
Paschke K (1998) Untersuchungen zum Energiestoffwechsel während der Embryonalentwicklung der Nordsee-Garnele Crangon crangon (Linnaeus 1758) (Decapoda: Caridea). Dissertation, University of Hamburg, Germany
Paschke KA, Gebauer P, Buchholz F, Anger K (2004) Seasonal variation in starvation resistance of early larval North Sea shrimp Crangon crangon (Decapoda: Crangonidae). Mar Ecol Prog Ser 279:183–191
Article
Google Scholar
Pechenik JA (2006) Larval experience and latent effects—metamorphosis is not a new beginning. Integr Comp Biol 46:323–333
Article
PubMed
Google Scholar
Pihl L, Rosenberg R (1984) Food selection and consumption of the shrimp Crangon crangon in some shallow marine areas in western Sweden. Mar Ecol Prog Ser 15:159–168
Article
Google Scholar
Podolsky RD, Moran AL (2006) Integrating function across marine life cycles. Integr Comp Biol 46:577–586
Article
PubMed
Google Scholar
Racotta IS, Palacios E, Ibarra AM (2003) Shrimp larval quality in relation to broodstock condition. Aquaculture 227:107–130
Article
Google Scholar
Roughgarden J, Gaines S, Possingham H (1988) Recruitment dynamics in complex life cycles. Science 241:1460–1466
Article
PubMed
CAS
Google Scholar
Salonen K, Sarvala J, Hakala I, Viljamen ML (1976) The relation of energy and organic carbon in aquatic invertebrates. Limnol Oceanogr 21:724–730
Article
CAS
Google Scholar
Shirley SM, Shirley TC (1989) Interannual variability in density, timing and survival of Alaskan red king crab Paralithodes camtschatica larvae. Mar Ecol Prog Ser 54:51–59
Article
Google Scholar
Siegel V, Damm U, Neudecker T (2008) Sex-ratio, seasonality and long-term variation in maturation and spawning of the brown shrimp Crangon crangon (L.) in the German Bight (North Sea). Helgol Mar Res 62:339–349
Article
Google Scholar
Sokal R, Rohlf J (1995) Biometry, 3rd edn. W.H. Freeman, New York
Google Scholar
Temming A, Damm U (2002) Life cycle of Crangon crangon in the North Sea: a simulation of the timing of recruitment as a function of the seasonal temperature signal. Fish Oceanogr 11:45–58
Article
Google Scholar
Tiews K (1970) Synopsis of biological data on the common shrimp Crangon crangon (Linnaeus, 1758). FAO Fish Rep 57:1167–1224
Google Scholar
Tiews K (1978) The predator-prey relationship between fish populations and the stock of brown shrimp (Crangon crangon L.) in German coastal waters. Rapp P-v Reun Cons int Explor Mer 172:250–258
Google Scholar
Urzúa Á, Anger K (2011) Larval biomass and chemical composition at hatching in two geographically isolated clades of the shrimp Macrobrachium amazonicum: intra-or interspecific variation? Invertebr Reprod Dev 55:236–246
Article
Google Scholar
Urzúa Á, Paschke K, Gebauer P, Anger K (2012) Seasonal and interannual variations in size, biomass and chemical composition of the eggs of North Sea shrimp, Crangon crangon (Decapoda: Caridea). Mar Biol 159:583–599
Article
Google Scholar
Viegas I, Marques S, Bessa F, Primo A, Martinho F, Azeiteiro U, Pardal MÂ (2012) Life history strategy of a southern European population of brown shrimp (Crangon crangon L.): evidence for latitudinal changes in growth phenology and population dynamics. Mar Biol 159:33–43
Article
Google Scholar
Wear RG (1974) Incubation in British Decapod Crustacea, and the effects of temperature on the rate and success of embryonic development. J Mar Biol Assoc UK 54:745–762
Article
Google Scholar
Webb JB, Eckert GL, Shirley TC, Tamone SL (2007) Changes in embryonic development and hatching in Chionoecetes opilio (Snow Crab) with variation in incubation temperature. Biol Bull 213:67–75
Article
PubMed
Google Scholar
Wehrtmann IS (1989) Seasonal occurrence and abundance of caridean shrimp larvae at Helgoland, German Bight. Helgol Mar Res 43:87–112
Google Scholar
Wehrtmann IS, Lopez GA (2003) Effects of temperature on the embryonic development and hatchling size of Betaeus emarginatus (Decapoda: Caridea: Alpheidae). J Nat Hist 37:2165–2178
Article
Google Scholar
Wiltshire KH, Malzahn AM, Greve W, Wirtz K, Janisch S, Mangelsdorf P, Manly B, Boersma M (2008) Resilience of North Sea phytoplankton spring bloom dynamics: an analysis of long-term data at Helgoland Roads. Limnol and Ocean 53:1294–1302
Article
Google Scholar
Wiltshire K, Kraberg A, Bartsch I, Boersma M, Franke H, Freund J, Gebühr C, Gerdts G, Stockmann K, Wichels A (2010) Helgoland roads, North Sea: 45 years of change. Estuar Coasts 33:295–310
Article
CAS
Google Scholar
Winberg GG (1971) Methods for the estimation of production of aquatic animals. Academic Press, London
Google Scholar
Zuur AF, Leno EN, Graham SM (2007) Analysing ecological data (statistics for biology and health). Springer, New York
Google Scholar