Rhoads DC, Lutz RA. Skeletal growth of aquatic organisms: biological records of environmental change. New York: Plenum Press; 1980.
Book
Google Scholar
Richardson C. Molluscs as archives of environmental change. Oceanogr Mar Biol Annu Rev. 2001;39:103–64.
Google Scholar
Beamish RJ, McFarlane GA. The forgotten requirement for age validation in fisheries biology. Trans Am Fish Soc. 1983;112(6):735–43.
Article
Google Scholar
Campana SE. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol. 2001;59:197–242.
Article
Google Scholar
Schöne BR. The curse of physiology—challenges and opportunities in the interpretation of geochemical data from mollusk shells. Geo Mar Lett. 2008;28:269–85.
Article
CAS
Google Scholar
Thomas RDK. Functional morphology, ecology, and evolutionary conservatism in the Glycymerididae (Bivalvia). Palaeontology. 1975;18:217–54.
Google Scholar
FAO. http://www.fao.org. Accessed 1 Nov 2019.
Poutiers JM. Bivalves (Acéphales, Lamellibranches, Péléccypodes). In: Fisher W, Bauchot ML, Scheider M, editors. Fiches FAO d´identification des espèces pour les besoins de la pêche 37. Volume 1. Végétaux et Invertébrés. Rome: FAO; 1987. p. 369–512.
Google Scholar
Beaver PE, Bucher DJ, Joannes-Boyau R. Growth patterns of three bivalve species targeted by the Ocean Cockle Fishery, southern New South Wales: Eucrassatella kingicola (Lamarck, 1805); Glycymeris grayana (Dunker, 1857); and Callista (Notocallista) kingii (Gray, 1827). Molluscan Res. 2017;37:104–12.
Article
Google Scholar
Abbot RT. Bivalves. In: Fischer W, Bianchi G, Scott WB, editors. FAO species identification sheets for fishery purposes Eastern Central Atlantic (Fishing Areas 34, 47 in part). Rome: FAO; 1982. p. 1–17.
Google Scholar
Arguelles J, Taipe A, Srmiento M, Valdez R. Prospección del recurso mejillón Glycymeris ovata en el área del callao (12–13 Mayo 2013). Instituto del Mar del Perú. 2014.
Poutiers JM. Bivalves of the world. Annotaed list of marine and brackish water species of interest to fisheries. FAO Catalogue. 1992 (Unpublished).
Berthou P, Blanchard M, Noël P, Vergnaud-Grazzini C. Stable isotope analysis of shells for age determination in four bivalve species from the Normand-Breton Gulf (western English Channel). International Council for the Exploration of the Sea Shellfish Committed, report. 1986.
Peharda M, Crnčević M, Bušelić I, Richardson CA, Ezgeta-Balić D. Growth and longevity of Glycymeris nummaria (Linnaeus, 1758) from the eastern Adriatic, Croatia. J Shellfish Res. 2012;31:947–50.
Article
Google Scholar
Brocas WM, Reynolds DJ, Butler PG, Richardson CA, Scourse JD, Ridgway ID, Ramsay K. The dog cockle, Glycymeris glycymeris (L.), a new annually-resolved sclerochronological archive for the Irish Sea. Palaeogeogr Palaeoclimatol Palaeoecol. 2013;373:133–40.
Article
Google Scholar
Royer C, Thébault J, Chauvaud L, Olivier F. Structural analysis and paleoenvironmental potential of dog cockle shells (Glycymeris glycymeris) in Brittany, northwest France. Palaeogeogr Palaeoclimatol Palaeoecol. 2013;373:123–32.
Article
Google Scholar
Bušelić I, Peharda M, Reynolds DJ, Butler PG, González AR, Ezgeta-Balić D, Vilibić I, Grbec B, Hollyman P, Richardson CA. Glycymeris bimaculata (Poli, 1795)—a new sclerochronological archive for the Mediterranean? J Sea Res. 2015;95:139–48.
Article
Google Scholar
Peharda M, Thébault J, Markulin K, Schöne BR, Janeković I, Chauvaud L. Contrasting shell growth strategies in two Mediterranean bivalves revealed by oxygen-isotope ratio geochemistry: the case of Pecten jacobaeus and Glycymeris pilosa. Chem Geol. 2017. https://doi.org/10.1016/j.chemgeo.2017.09.029.
Article
Google Scholar
Reynolds DJ, Hall IR, Slater SM, Scourse JD, Halloran PR, Sayer MDJ. Reconstructing past seasonal to multicentennial-scale variability in the NE atlantic ocean using the long-lived marine bivalve mollusk Glycymeris glycymeris. Paleoceanography. 2017;32:1153–73.
Article
Google Scholar
Scarabino V. Moluscos del golfo San Matías (provincia de Río Negro, República Argentina). Inventario y claves para su identificación. Comunicaciones de la Sociedad Malacológica del Uruguay. 1977;4:177–285.
Google Scholar
Zelaya DG. Marine bivalves from the Argentine coast and continental shelf: species diversity and assessment of the historical knowledge. Am Malacol Bull. 2015;33:245–62.
Article
Google Scholar
Rocha VP, Matthews Cascon H. The family glycymerididae (Mollusca: Bivalvia) from North and Northeast Brazil. Arquivos de Ciências do. 2014;47(2):64–71.
Google Scholar
Bayer MS, Gordillo S. A new Pleistocene species of Glycymeris (Bivalvia, Glycymerididae) from northern Patagonia, Argentina. Ameghiniana. 2013;50(2):265–9.
Article
Google Scholar
Doldan MS. Patrones y procesos de la dinámica poblacional de la ostra puelche, Ostrea puelchana, (D’ Orbigny, 1842). PhD thesis. Universidad de Buenos Aires, Argentina. 2013.
Rivas AL, Beier EJ. Temperature and salinity fields in the North Patagonian gulfs. Oceanol Acta. 1990;13:15–20.
Google Scholar
Piola AR, Scasso LM. Circulación en el golfo San Matías. Geoacta. 1988;15:33–51.
Google Scholar
Gagliardini DA, Rivas AL. Environmental characteristics of San Matías Gulf obtained from LANDSAT-TM and ETM + data. Gayana. 2004;68:186–93.
Google Scholar
Williams GN, Zaidman PC, Glembocki NG, Narvarte MA, González RA, Esteves JL, Gagliardini DA. Comparison between remotely-sensed sea-surface temperature (AVHRR) and in situ records in San Matías Gulf (Patagonia, Argentina). LAJAR. 2014;2:192–203.
Article
Google Scholar
Williams GN, Dogliotti AI, Zaidman P, Solis M, Narvarte MA, Gonzalez RC, Esteves JL, Gagliardini DA. Assessment of remotely-sensed sea-surface temperature and chlorophyll-a concentration in San Matías Gulf (Patagonia, Argentina). Cont Shelf Res. 2013;52:159–71.
Article
Google Scholar
Morsan EM, Pappalardo P, Doldan MS. Growth compensation as a regulatory mechanism of purple clam Amiantis purpurata population dynamics in Patagonia. Mar Ecol Prog Ser. 2011;443:207–16.
Article
Google Scholar
Genchi SA, Carbone ME, Piccolo MC, Perillo ME. Déficit hídrico en San Antonio Oeste, Argentina. Revista de Climatología. 2010;10:29–43.
Google Scholar
Servicio Meteorológico Nacional http://www.smn.gob.ar/.
Yamaguchi DK. A simple method for cross-dating increment cores from living trees. Can J For Res. 1991;21(3):414–6.
Article
Google Scholar
Panfili, J, Morales-Nin, B. Semi-direct validation. In: Panfili J, Pontual H, Troadec H, Wright PJ, eds. Manual of fish sclerochronology. Ifremer-IRD coedition, Brest (France). 2002. p. 129–34.
Quinn TJ, Deriso RB. Quantitative fish dynamics. Oxford: Oxford University Press; 1999.
Google Scholar
Pinheiro JC, Bates DM. Mixed-effects models in S and S-PLUS. New York: Springer-Verlag; 2002 (Corrected third printing).
Google Scholar
Lindstrom MJ, Bates DM. Nonlinear mixed effects models for repeated measures data. Biometrics. 1990;46:673–87.
Article
CAS
PubMed
Google Scholar
Munro JL, Pauly D. A simple method for comparing the growth of fishes and invertebrates. Fishbyte. 1983;1:5–6.
Google Scholar
Pauly D. Gill size and temperature as governing factors in fish growth: a generalization of von Bertalanffy’s growth formula. 1979.
Penttila J, Dery LM. Age determination methods for Northwest Atlantic species. NOAA Technical Report. NMFS. 1988;72:129–32.
Google Scholar
Németh A, Kern Z. Sclerochronological study of a Glycymeris vangentsumi population from the Madeira Islands. Front Earth Sci. 2018;6:76.
Article
Google Scholar
Walliser EO, Schöne BR, Tütken T, Zirkel J, Grimm KI, Pross J. The bivalve Glycymeris planicostalis as a high-resolution paleoclimate archive for the Rupelian (Early Oligocene) of central Europe. Clim Past. 2015;11:653–68.
Article
Google Scholar
Arendt JD. Adaptive intrinsic growth rates: an integration across taxa. Q Rev Biol. 1997;72:149–77.
Article
Google Scholar
Savina M. Modélisation écologique des populations de palourdes roses (Paphia rhomboïdes) et d’amandes de mer (Glycymeris glycymeris) en Manche. Ph.D. Thesis, Université d’Aix-Marseille II. 2004.
Peharda M, Black BA, Purroy A, Mihanović H. The bivalve Glycymeris pilosa as a multidecadal environmental archive for the Adriatic and Mediterranean Seas. Mar Environ Res. 2016;119:79–87.
Article
CAS
PubMed
Google Scholar
Paparazzo FE, Crespi-Abril AC, Gonçalves RJ, Barbieri ES, Gracia Villalobos LL, Solís ME, Soria G. Patagonian dust as a source of macronutrients in the Southwest Atlantic Ocean. Oceanography. 2018;31(4):33–9.
Article
Google Scholar
Galap C, Netchitaı̈lo P, Leboulenger F, Grillot J-P. Variations of fatty acid contents in selected tissues of the female dog cockle (Glycymeris glycymeris L., Mollusca, Bivalvia) during the annual cycle. Comp Biochem Physiol A: Mol Integr Physiol. 1999;122:241–54.
Article
Google Scholar
Najdek M, Ezgeta-Balić D, Blažina M, Crnčević M, Peharda M. Potential food sources of Glycymeris nummaria (Mollusca: Bivalvia) during the annual cycle indicated by fatty acid analysis. Sci Mar. 2016;80:123–9.
CAS
Google Scholar
Featherstone AM, Butler PG, Peharda M, Chauvaud L, Thébault J. Influence of riverine input on the growth of Glycymeris glycymeris in the Bay of Brest, North-West France. PLoS ONE. 2017;12:e0189782.
Article
PubMed
PubMed Central
CAS
Google Scholar
Naidu KS, Anderson JT. Aspects of scallop recruitment on St. Pierre Bank in relation to oceanography and implications for resource management. CAFSAC Res. Doc. 84/29. 1984. 15 pp.
Morsan EM, Orensanz J. Age structure and growth in an unusual population of purple clams, Amiantis purpuratus (Lamarck, 1818) (Bivalvia; Veneridae), from Argentine Patagonia. J Shellfish Res. 2004;2004(23):73–80.
Google Scholar
Arnold WS, Marelli DC, Bray CP, Harrison MM. Recruitment of bay scallops Argopecten irradians in Floridan Gulf of Mexico waters: scales of coherence. Mar Ecol Prog Ser. 1998;170:143–57.
Article
Google Scholar
Orensanz JL, Parma AM, Smith SJ. Dynamics, assessment, and management of exploited natural scallop populations. Developments in aquaculture and fisheries science. New York: Elsevier; 2016. p. 611–95.
Google Scholar
Ituarte CF. Sobre la sexualidad de Glycymeris longior (Sowerby) (Mollusca Pelecypoda). Neotropica. 1979;25:161–5.
Google Scholar
Nakaoka M. Yearly variation in recruitment and its effect on population dynamics in Yoldia notabilis (Mollusca: Bivalvia), analyzed using projection matrix model. Res Popul Ecol. 1993;35:199–213.
Article
Google Scholar
Eckman JE. Closing the larval loop: linking larval ecology to the population dynamics of marine benthic invertebrates. J Exp Mar Biol Ecol. 1996;200:207–37.
Article
Google Scholar
Roughgarden J, Gaines S, Possingham H. Recruitment dynamics in complex life cycles. Science. 1988;241:1460–6.
Article
CAS
PubMed
Google Scholar
Amor A. The larval development of Arenicola brasiliensis Nonato Polychaeta, Arenicolidae. Physis. 1981;39:79–83.
Google Scholar
Piacentino GL, Luzzatto DC. Hippocampus patagonicus sp. nov., nuevo caballito de mar para la Argentina (Pisces, Syngnathiformes). Revista del Museo Argentino de Ciencias Naturales. 2004;6:339–49.
Article
Google Scholar
Morsan EM, Kroeck MA. Reproductive cycle of purple clam, Amiantis purpurata (Bivalvia: Veneridae) in northern Patagonia (Argentina). J Mar Biol Assoc UK. 2005;85:367–73.
Article
Google Scholar
Pascual MS, Zampatti EA, Iribarne OO. Population structure and demography of the puelche oyster (Ostrea puelchana, D’Orbigny, 1841) grounds in Northern Patagonia, Argentina. J Shellfish Res. 2001;20:1003–10.
Google Scholar