Soliman YAA, Brahim AM, Moustafa AH, Hamed MAF. Antifouling evaluation of extracts from Red Sea soft corals against primary biofilm and biofouling. Asian Pac J Trop Biomed. 2017;7(11):991–7.
Article
Google Scholar
Moreira JMR, Teodósio JS, Silva FC, Simões M, Melo LF, Mergulhão FJ. Influence of flow rate variation on the development of Escherichia coli biofilms. Bioprocess Biosyst Eng. 2013;36(11):1787–96.
Article
CAS
PubMed
Google Scholar
Xin X, Huang G, Zhou X, Sun W, Jin C, Jiang W, et al. Potential antifouling compounds with antidiatom adhesion activities from the sponge-associated bacteria, Bacillus pumilus. J Adhes Sci Technol. 2017;31(9):1028–43.
Article
CAS
Google Scholar
Gittens JE, Smith TJ, Suleiman R, Akid R. Current and emerging environmentally-friendly systems for fouling control in the marine environment. Biotechnol Adv. 2013;31(8):1738–53.
Article
CAS
PubMed
Google Scholar
Nandakumar K, Yano T. Biofouling and its prevention: a comprehensive overview. Biocontrol Sci. 2003;8(4):133–44.
Article
Google Scholar
Suresh M, Iyapparaj P, Anantharaman P. Antifouling activity of lipidic metabolites derived from Padina tetrastromatica. Appl Biochem Biotechnol. 2016;179(5):805–18.
Article
CAS
PubMed
Google Scholar
Soliman YA, Ibrahim AM, Tadros HR, Abou-Taleb AE, Moustafa AH, Hamed MA. Antifouling and antibacterial activities of marine bioactive compounds extracted from some red sea cucumber. Int J Contemp Appl Sci. 2016;3(9):83–103.
Google Scholar
Piola RF, Dafforn KA, Johnston EL. The influence of antifouling practices on marine invasions. Biofouling. 2009;25(7):633–44.
Article
CAS
PubMed
Google Scholar
Schultz MP, Bendick JA, Holm ER, Hertel WM. Economic impact of biofouling on a naval surface ship. Biofouling. 2011;27(1):87–98.
Article
CAS
PubMed
Google Scholar
Tarełko W. The effect of hull biofouling on parameters characterising ship propulsion system efficiency. Polish Marit Res. 2014;21(4):27–34.
Article
Google Scholar
Demirel YK, Uzun D, Zhang Y, Fang HC, Day AH, Turan O. Effect of barnacle fouling on ship resistance and powering. Biofouling. 2017;33(10):819–34.
Article
PubMed
Google Scholar
IMO. Focus on IMO: Anti-fouling systems. International Maritime Organization. London; 2002. p. 1–31.
Mimura H, Sato R, Sasaki Y, Furuyama Y, Taniike A, Yoshida K, et al. Accelerator analysis of tributyltin adsorbed onto the surface of a tributyltin resistant marine Pseudoalteromonas sp. cell. Int J Mol Sci. 2008;9(10):1989–2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iyapparaj P, Revathi P, Ramasubburayan R, Prakash S, Anantharaman P, Immanuel G, et al. Antifouling activity of the methanolic extract of Syringodium isoetifolium, and its toxicity relative to tributyltin on the ovarian development of brown mussel Perna indica. Ecotoxicol Environ Saf. 2013;89:231–8.
Article
CAS
PubMed
Google Scholar
Qian P-Y, Xu Y, Fusetani N. Natural products as antifouling compounds: recent progress and future perspectives. Biofouling. 2010;26(2):223–34.
Article
CAS
PubMed
Google Scholar
Bellotti N, Deyá C, Del Amo B, Romagnoli R. Antifouling paints with zinc ‘tannate’. Ind Eng Chem Res. 2010;49(7):3386–90.
Article
CAS
Google Scholar
Oikonomou EK, Iatridi Z, Moschakou M, Damigos P, Bokias G, Kallitsis JK. Development of Cu2+ - and/or phosphonium-based polymeric biocidal materials and their potential application in antifouling paints. Prog Org Coatings. 2012;75(3):190–9.
Article
CAS
Google Scholar
Pérez M, Blustein G, García M, del Amo B, Stupak M. Cupric tannate: a low copper content antifouling pigment. Prog Org Coatings. 2006;55(4):311–5.
Article
CAS
Google Scholar
Rajan R, Selvaraj M, Palraj S, Subramanian G. Studies on the anticorrosive & antifouling properties of the Gracilaria edulis extract incorporated epoxy paint in the Gulf of Mannar Coast, Mandapam, India. Prog Org Coatings. 2016;90:448–54.
Article
CAS
Google Scholar
Fitridge I, Dempster T, Guenther J, de Nys R. The impact and control of biofouling in marine aquaculture: a review. Biofouling. 2012;28(7):649–69.
Article
PubMed
Google Scholar
Thomas KV, Brooks S. The environmental fate and effects of antifouling paint biocides. Biofouling. 2010;26(1):73–88.
Article
CAS
PubMed
Google Scholar
Chen S, Ma C, Zhang G. Biodegradable polymers for marine antibiofouling: poly(ε-caprolactone)/poly(butylene succinate) blend as controlled release system of organic antifoulant. Polym (United Kingdom). 2016;90:215–21.
CAS
Google Scholar
Clare AS. Marine natural product antifoulants: status and potential. Biofouling. 1996;9(3):211–29.
Article
CAS
Google Scholar
Qian P-Y, Xu SY. Antifouling activity of marine natural products. In: Handbook of marine natural products. 2012. p. 749–821.
Chapter
Google Scholar
Acevedo MS, Puentes C, Carreño K, León JG, Stupak M, García M, et al. Antifouling paints based on marine natural products from Colombian Caribbean. Int Biodeterior Biodegrad. 2013;83:97–104.
Article
CAS
Google Scholar
Sipkema D, Franssen MCR, Osinga R, Tramper J, Wijffels RH. Marine sponges as pharmacy. Mar Biotechnol. 2005;7(3):142–62.
Article
CAS
Google Scholar
Bordbar S, Anwar F, Saari N. High-value components and bioactives from sea cucumbers for functional foods—a review. Mar Drugs. 2011;9(10):1761–805.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pangestuti R, Arifin Z. Medicinal and health benefit effects of functional sea cucumbers. J Tradit Complement Med. 2018;8(3):341–51.
Article
PubMed
Google Scholar
Bondoc KGV, Lee H, Cruz LJ, Lebrilla CB, Juinio-Meñez MA. Chemical fingerprinting and phylogenetic mapping of saponin congeners from three tropical holothurian sea cucumbers. Comp Biochem Physiol. 2013;166(3–4):182–93.
Article
CAS
Google Scholar
Mert Ozupek N, Cavas L. Triterpene glycosides associated antifouling activity from Holothuria tubulosa and H. polii. Reg Stud Mar Sci. 2017;13:32–41.
Article
Google Scholar
Datta D, Nath Talapatra S, Swarnakar S. Bioactive compounds from marine invertebrates for potential medicines—an overview. Int Lett Nat Sci. 2015;34:42–61.
Google Scholar
Janakiram N, Mohammed A, Rao C. Sea cucumbers metabolites as potent anti-cancer agents. Mar Drugs. 2015;13:2909–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han H, Yi YH, Li L, Liu BS, La MP, Zhang HW. Antifungal active triterpene glycosides from sea cucumber Holothuria scabra. Acta Pharm Sin. 2009;44(6):620–4.
CAS
Google Scholar
Tian F, Zhang X, Tong Y, Yi Y, Zhang S, Li L, et al. PE, a new sulfated saponin from sea cucumber, exhibits anti-angiogenic and anti-tumor activities in vitro and in vivo. Cancer Biol Ther. 2005;4(8):874–82.
Article
CAS
PubMed
Google Scholar
Althunibat OY, Hashim RB, Taher M, Daud JM, Ikeda MA, Zali B. In vitro antioxidant and antiproliferative activities of three malaysian sea cucumber species. Eur J Sci Res. 2009;37(3):376–87.
Google Scholar
Majid A, Maryam E, Reza DA, Neda S, Ghodrat M. New observation of two sea cucumber species from Abu Musa Island (Persian Gulf, Iran). Eur J Exp Biol. 2012;3(2):611–5.
Google Scholar
Mamelona J, Pelletier É, Girard-Lalancette K, Legault J, Karboune S, Kermasha S. Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber. Cucumaria frondosa. Food Chem. 2007;104(3):1040–7.
Article
CAS
Google Scholar
Vanden Berghe DA, Vlietinck AJ. Screening methods for antibacterial and antiviral agents from higher plants. In: Dey P, Harbone J, editors. Methods in Plant Biochemistry. London: Academic Press; 1991. p. 47–69.
Google Scholar
Guillard RRL. Culture of Phytoplankton for Feeding Marine Invertebrates. In: Culture of Marine Invertebrate Animals. 1975. p. 29–60.
Chapter
Google Scholar
Feng DQ, Ke CH, Lu CY, Li SJ. Herbal plants as a promising source of natural antifoulants: evidence from barnacle settlement inhibition. Biofouling. 2009;25(3):181–90.
Article
CAS
PubMed
Google Scholar
Venkatnarayanan S, Murthy PS, Kirubagaran R, Venugopalan VP. Effect of chlorination on barnacle larval stages: implications for biofouling control and environmental impact. Int Biodeterior Biodegrad. 2016;109:141–9.
Article
CAS
Google Scholar
Kitano Y, Akima C, Yoshimura E, Nogata Y. Anti-barnacle activity of novel simple alkyl isocyanides derived from citronellol. Biofouling. 2011;27(2):201–5.
Article
CAS
PubMed
Google Scholar
Liu H, Chen SY, Guo JY, Su P, Qiu YK, Ke CH, et al. Effective natural antifouling compounds from the plant Nerium oleander and testing. Int Biodeterior Biodegrad. 2018;127:170–7.
Article
CAS
Google Scholar
Gohari AR, Hadjiakhoondi A, Sadat-Ebrahimi SE, Saeidnia S, Shafiee A. Cytotoxic terpenoids from Satureja macrantha C A Mey. Daru. 2005;13(4):177–81.
CAS
Google Scholar
Baron E, Finegold S. Methods for testing anti-microbial effectiveness. In: Stephanie M, editor. Diagnostic microbiology. Baltimore: Mosboy; 1990. p. 171–94.
Google Scholar
Farjami B, Nematollahi MA, Moradi Y, Irajian G, Nazemi M, Ardebili A, et al. Antibacterial activity of the sea cucumber Holothuria leucospilota. Int J Mol Clin Microbiol. 2013;3(1):225–30.
Google Scholar
Mashjoor S, Yousefzadi M, Esmaeili MA, Rafiee R. Cytotoxicity and antimicrobial activity of marine macro algae (Dictyotaceae and Ulvaceae) from the Persian Gulf. Cytotechnology. 2016;68(5):1717–26.
Article
PubMed
Google Scholar
Safi C, Zebib B, Merah O, Pontalier PY, Vaca-Garcia C. Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew Sustain Energy Rev. 2014;35:265–78.
Article
Google Scholar
Zhang SY, Yi YH, Tang HF. Bioactive triterpene glycosides from the sea cucumber Holothuria fuscocinerea. J Nat Prod. 2006;69(10):1492–5.
Article
CAS
PubMed
Google Scholar
Zou Z, Yi Y, Wu H, Yao X, Du L, Jiuhong W, et al. Intercedensides D-I, cytotoxic triterpene glycosides from the sea cucumber Mensamaria intercedens lampert. J Nat Prod. 2005;68(4):540–6.
Article
CAS
PubMed
Google Scholar
Drazen JC, Phleger CF, Guest MA, Nichols PD. Lipid, sterols and fatty acid composition of abyssal holothurians and ophiuroids from the North-East Pacific Ocean: food web implications. Comp Biochem Physiol. 2008;151(1):79–87.
Article
CAS
Google Scholar
Wang Z, Gong W, Sun G, Tang H, Liu B, Li L, et al. New holostan-type triterpene glycosides from the sea cucumber Apostichopus japonicus. Nat Prod Commun. 2012;7(11):1431–4.
CAS
PubMed
Google Scholar
Han H, Zhang W, Yi YH, Liu BS, Pan MX, Wang XH. A novel sulfated holostane glycoside from sea cucumber Holothuria leucospilota. Chem Biodivers. 2010;7(7):1764–9.
Article
CAS
PubMed
Google Scholar
Kalinin VI, Aminin DL, Avilov SA, Silchenko AS, Stonik VA. Triterpene glycosides from sea cucucmbers (holothurioidea, echinodermata) Biological activities and functions. Stud Nat Prod Chem. 2008;35:135–96.
Article
CAS
Google Scholar