Agawin NSR, Agustí S (1997) Abundance, frequency of dividing cells and growth rates of Synechococcus sp. (cyanobacteria) in the stratified Northwest Mediterranean Sea. J Plankton Res 19:1599–1615
Article
Google Scholar
Agawin NSR, Duarte CM, Agustí S (2000) Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol Oceanogr 45:591–600
Article
CAS
Google Scholar
Andrade L, Gonzales AM, Rezende CE, Suzuki M, Valentin JL, Paranhos R (2007) Distribution of HNA and LNA bacterial groups in the Southwest Atlantic Ocean. Braz J Microbiol 38:330–336
Article
Google Scholar
Button DK (1998) Nutrient uptake by microorganisms according to kinetic parameters from theory as related to cytoarchitecture. Microbiol Mol Biol Rev 62:636–645
CAS
PubMed
Google Scholar
Calvo-Díaz A, Morán XAG (2006) Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay. Aquat Microb Ecol 42:159–174
Article
Google Scholar
Carlson CA, Ducklow HW, Sleeter TD (1996) Stocks and dynamics of bacterioplankton in the northwester Sargasso Sea. Deep-Sea Res II 4:491–516
Article
Google Scholar
Casotti R, Brunet C, Aronne B, D'Alcalà MR (2000) Mesoscale features of phytoplankton and planktonic bacteria in a coastal area as induced by external water masses. Mar Ecol
Prog Ser 195:15–27
Google Scholar
Cetinić I, Viličić D, Burić Z, Olujić G (2006) Phytoplankton seasonality in a highly stratified karstic estuary (Krka, Adriatic Sea). Hydrobiologia 555:31–40
Article
Google Scholar
Chisholm SW, Olson RJ, Zettler ER, Waterbury JB, Goericke R, Welschmeyer N (1988) A novel free-living prochlorophyte occurs at high cell concentrations in the oceanic euphotic zone. Nature 334:340–343
Article
Google Scholar
Cole JJ, Findlay S, Pace ML (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Prog Ser 43:1–10
Article
Google Scholar
Cotner JB, Biddanda BA (2002) Small players, large role: microbial influence on auto-heterotrophic coupling and biogeochemical processes in aquatic ecosystems. Ecosystems 5:105–121
Article
CAS
Google Scholar
Crosbie ND, Furnas MJ (2001) Abundance, distribution and flow-cytometric characterization of picophytoprokaryote populations in central (17°S) and southern (20°S) shelf waters of the Great Barrier Reef. J Plankton Res 23:809–828
Article
Google Scholar
Ducklow HW (1992) Factors regulating bottom-up control of bacterial biomass in open ocean plankton communities. Archiv für Hydrobiologie, Organ der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, Beihefte. Ergebnisse der Limnologie 37:207–217
Ducklow HW, Purdie DA, Williams PJL, Davis JM (1986) Bacterioplankton: a sink for carbon in a coastal marine plankton community. Science 232:865–867
Article
CAS
PubMed
Google Scholar
Fuhrman JA, Azam F (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters. Mar Biol 66:109–120
Article
Google Scholar
Fuks D, Radić J, Radić T, Najdek M, Blažina M, Degobbis D, Smodlaka N (2005) Relationships between heterotrophic bacteria and cyanobacteria in the northern Adriatic in relation to the mucilage phenomenon. Sci Total Environ 353:178–188
Article
CAS
PubMed
Google Scholar
Gasol JM (1994) A framework for the assessment of top-down vs. bottom-up control of heterotrophic nanoflagellates abundance. Mar Ecol Prog Ser 113:291–300
Article
Google Scholar
Gasol JM, Del Giorgio PA (2000) Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar 64:197–224
Article
Google Scholar
Gasol JM, Morán XAG (1999) Effects of filtration on bacterial activity and picoplankton community structure as assessed by flow cytometry. Aquat Microb Ecol 16:251–264
Article
Google Scholar
Grasshof K (1976) Methods of seawater analysis. Verlag Chemie, Weinhein
Google Scholar
Grégori G, Citterio S, Ghiani A, Labra M, Scorbati SB, Denis M (2001) Resolution of viable and membrane-compromised bacteria in fresh water and marine waters based on analytical flow cytometry and nucleic acid double staining. Appl Environ Microbiol 67:4662–4670
Article
PubMed
Google Scholar
Hobbie JE, Cole JJ (1984) Response of a detrital foodweb to eutrophication. B Mar Sci 35:357–363
Google Scholar
Jochem FJ (2001) Morphology and DNA content of bacterioplankton in the northern Gulf of Mexico: analysis by epifluorescence microscopy and flow cytometry. Aquat Microb Ecol 25:179–194
Article
Google Scholar
Jochem FJ, Lavrentyev PJ, First MR (2004) Growth and grazing rates of bacteria groups with different apparent DNA content in the Gulf of Mexico. Mar Biol 145:1213–1225
Article
Google Scholar
Jürgens K, Matz C (2002) Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Leeuwenhoek 81:413–434
Article
PubMed
Google Scholar
Kirchman DL, Rich JH (1997) Regulation of bacterial growth rates by dissolved organic carbon and temperature in the equatorial Pacific Ocean. Microb Ecol 33:11–20
Article
PubMed
Google Scholar
Kjelleberg S, Albertson N, Flaerdh K, Holmquist L, Jouper-Jaan A, Marouga R, Oestling J, Svenblad B, Weichart D (1993) How do nondifferentiating bacteria adapt to starvation? Antonie Leeuwenhoek 63:333–341
Article
CAS
PubMed
Google Scholar
Krstulović N (1992) Bacterial biomass and production rates in the central Adriatic. Acta Adriat 33:49–65
Google Scholar
Krstulović N, Šolić M, Marasović I (1997) Relationship between bacteria, phytoplankton and heterotrophic nanoflagellates along the trophic gradient. Helgöl Mar Res 51:433–443
Google Scholar
Li WKW, Dickie PM (2001) Monitoring phytoplankton, bacterioplankton and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry. Cytometry 44:236–246
Article
CAS
PubMed
Google Scholar
Li WKW, Jellett JF, Dickie PM (1995) DNA distribution in planktonic bacteria stained with TOTO or TO-PRO. Limnol Oceanogr 40:1485–1495
Article
CAS
Google Scholar
Lindell D, Post AF (1995) Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol Oceanogr 40:1130–1141
Article
Google Scholar
Llabres M, Agustí S, Alonso-Laita P, Herndl GJ (2010) Synechococcus and Prochlorococcus cell death induced by UV radiation and the penetration of lethal UVR in the Mediterranean Sea. Mar Ecol Prog Ser 399:27–37
Article
CAS
Google Scholar
Longnecker K, Sherr BF, Sherr EB (2005) Activity and phylogenetic diversity of bacterial cells with high and low nucleic acid content and electron transport system activity in an upwelling ecosystem. Appl Environ Microb 71:7737–7749
Article
CAS
Google Scholar
Longnecker K, Sherr BF, Sherr EB (2006) Variation in cell-specific rates of leucine and thymidine incorporation by marine bacteria with high and with low nucleic acid content off the Oregon coast. Aquat Microb Ecol 43:113–125
Article
Google Scholar
Magazzù G, Decembri F (1995) Primary production, biomass and abundance of phototrophic picoplankton in the Mediterranean Sea: a review. Aquat Microb Ecol 9:97–104
Article
Google Scholar
Marasović I, Ninčević-Gladan Ž, skejić S, Bužančić M (2006) Biološke osobine u Kušpilić G i sur. Kontrola kakvoće obalnog mora (Projekt Vir-Konavle 2005). Studije i elaborati Instituta za oceanografiju i ribarstvo, Split, pp 68–81
Marie D, Partensky F, Jacquet S, Vaulot D (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Environ Microb 63:186–193
CAS
Google Scholar
Mary I, Heywood JL, Fuchs BM, Amann R, Burkill PH, Tarran GA, Zubkov MV (2006) SAR11 dominance among metabolically active low nucleic acid bacterioplankton in surface waters along an Atlantic meridional transect. Aquat Microb Ecol 45:107–113
Article
Google Scholar
Mella-Flores D, Mazard S, Humily F et al (2011) Is the distribution of Prochlorococcus and Synechococcus ecotypes in the Mediterranean Sea affected by global warming? Biogeosciences 8:2785–2804
Article
CAS
Google Scholar
Mével G, Vernet M, Goutx M, Ghiglione JF (2008) Seasonal to hour variation scales in abundance and production of total and particle-attached bacteria in the open NW Mediterranean Sea (0–1000 m). Biogeosciences 5:1573–1586
Article
Google Scholar
Morán XAG, Gasol JM, Pedrós-Alió C, Estrada M (2002) Partitioning of phytoplanktonic organic carbon production and bacterial production along a coastal-offshore gradient in the NE Atlantic during different hydrographic regimes. Aquat Microb Ecol 29:239–252
Article
Google Scholar
Morán XAG, Fernández E, Pérez V (2004) Size-fractionated primary production, bacterial production and net community production in subtropical and tropical domains of the oligotrophic NE Atlantic in autumn. Mar Ecol Prog Ser 274:17–29
Article
Google Scholar
Morán XAG, Bode A, Suárez LÁ, Nogueira E (2007) Assessing the relevance of nucleic acid content as an indicator of marine bacterial activity. Aquat Microb Ecol 46:141–152
Article
Google Scholar
Morović M i sur (2006) Fizikalne i kemijske osobine u Kušpilić G i sur. Kontrola kakvoće obalnog mora (Projekt Vir-Konavle 2005). Studije i elaborati Instituta za oceanografiju i ribarstvo, Split, pp 29–46
Neuer S (1992) Growth dynamics of marine Synechococcus spp in the Gulf of Alaska. Mar Ecol Prog Ser 83:251–262
Article
Google Scholar
Ninčević Gladan Ž, Marasović I, Kušpilić G, Krstulović N, Šolić M, Šestanović S (2006) Abundance and composition of picoplankton in the mid Adriatic Sea. Acta Adriatic 47:127–140
Google Scholar
Olson RJ, Zettler ER, DuRand MD (1993) Handbook of methods in aquatic microbial ecology. In: Kemp PF, Sherr BF, Sherr EV, Cole JJ (eds) Phytoplankton analysis using flow cytometry. Lewis Publishers, Boca Raton
Google Scholar
Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948
Article
Google Scholar
Radić T, Šilović T, Šantić D, Fuks D, Mičić M (2009) Preliminary flow cytometric analyses of phototrophic pico-and nanoplankton communities in the Northern Adriatic. Fresenius Environ Bull 18:715–724
Google Scholar
Riemann B, Bjorsen PK, Newell S, Fallon R (1987) Calculation of cell production of coastal marine bacteria based on measured incorporation of (H)thymidine. Limnol Oceanogr 32:471–476
Article
CAS
Google Scholar
Šantić D, Krstulović N, Šolić M, Kušpilić G (2011) Distribution of Synechococcus and Prochlorococcus in the central Adriatic Sea. Acta Adriatic 52:101–114
Google Scholar
Schattenhofer M, Wulf J, Kostadinov I, Glöckner FO, Zubkov MV, Fuchs BM (2011) Phylogenetic characterisation of picoplanktonic populations with high and lownucleic acid content in the North Atlantic Ocean. Syst Appl Microbiol 34:470–475
Article
PubMed
Google Scholar
Šestanović S, Šolić M, Krstulović N, Ninčević Ž (2004) Seasonal and vertical distribution of planktonic bacteria and heterotrophic nanoflagellates in the middle Adriatic Sea. Helgöl Mar Res 58:83–92
Article
Google Scholar
Shapiro LP, Haugen EM (1988) Seasonal distribution and tolerance of Synechococcus in Boothbay harbor. Maine Estuar Coast Shelf Sci 26:517–525
Article
CAS
Google Scholar
Šilović T, Ljubešić Z, Mihanović H, Olujić G, Terzić S, Jakšić Ž, Viličić D (2011) Picoplankton composition related to thermohaline circulation: the Albanian boundary zone (southern Adriatic) in late spring. Estuar Coast Shelf Sci 91:519–525
Article
Google Scholar
Šimek K, Chrzanowski TH (1992) Direct and indirect evidence of the size selective grazing on pelagic bacteria by freshwater nanoflagellates. Appl Environ Microb 58:3715–3720
Google Scholar
Šolić M, Krstulović N, Šestanović S (2001) The roles of predation, substrate suply and temperature in controlling bacterial abundance: interaction between spatial and seasonal scale. Acta Adriatic 42:35–48
Google Scholar
Šolić M, Krstulović N, Vilibić I, Kušpilić G, Šestanović S, Šantić D, Ordulj M (2008) The role of water mass dynamics in controlling bacterial abundance and production in the middle Adriatic Sea. Mar Environ Res 65:388–404
Article
PubMed
Google Scholar
Šolić M, Krstulović N, Vilibić I, Bojanić N, Kušpilić G, Šestanović S, Šantić D, Ordulj M (2009) Variability in the bottom-up and top-down control of bacteria on trophic and temporal scale in the middle Adriatic Sea. Aquat Microb Ecol 58:15–29
Article
Google Scholar
Svensen C, Viličić D, Wassmann P, Arashkevich E, Ratkova T (2007) Plankton distribution and vertical flux of biogenic matter during high summer stratification in the Krka estuary (Eastern Adriatic). Estuar Coast Shelf Sci 71:381–390
Article
Google Scholar
Waterbury JB, Watson S, Guillard RRL, Brand LE (1979) Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature 277:293–294
Article
Google Scholar
Waterbury JB, Watson S, Valois FW, Franks DG (1986) Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Can J Fish Aquat Sci 214:71–120
Google Scholar
Zhang Y, Jiao NZ, Hong N (2008) Comparative study of picoplankton biomass and community structure in different provinces from subarctic to subtropical oceans. Deep-Sea Res II 55:1605–1614
Article
Google Scholar
Zubkov MV, Fuchs BM, Burkill PH, Amann R (2001) Comparison of cellular and biomass specific activities of dominant bacterioplankton groups in stratified waters of the Celtic Sea. Appl Environ Microb 67:5210–5218
Article
CAS
Google Scholar
Zubkov MV, Allen JI, Fuchs BM (2004) Coexistence of dominant groups in marine bacterioplankton community-a combination of experimental and modelling approaches. J Mar Biol Assoc UK 84:519–529
Article
CAS
Google Scholar
Zubkov MV, Tarran GA, Burkill PH (2006) Bacterioplankton of low and high DNA content in the suboxic waters of the Arabian Sea and the Gulf of Oman: abundance and amino acid uptake. Aquat Microb Ecol 43:23–32
Article
Google Scholar
Zweifel UL, Hagström Å (1995) Total counts of marine bacteria include a large fraction of non-nucleoid-containing bacteria (ghosts). Appl Environ Microb 61:2180–2185
CAS
Google Scholar